Estimation Problems for Periodically Correlated Isotropic Random Fields

作者: Iryna Dubovetska , Oleksandr Masyutka , Mikhail Moklyachuk

DOI: 10.1007/S11009-013-9339-6

关键词: IsotropyField (mathematics)Mean squared errorSpectral theoryMinimaxMathematical physicsRandom fieldCyclostationary processMathematicsCombinatoricsEuclidean spaceStatistics and ProbabilityGeneral Mathematics

摘要: Spectral theory of isotropic random fields in Euclidean space developed by M. I. Yadrenko is exploited to find a solution the problem optimal linear estimation functional $$ A\zeta ={\sum\limits_{t=0}^{\infty}}\,\,\,{\int_{S_n}} \,\,a(t,x)\zeta (t,x)\,m_n(dx) $$ which depends on unknown values periodically correlated (cyclostationary with period T) respect time sphere S n E field ζ(t, x), t ∈ Z, x ∈ S . Estimates are based observations x) + θ(t, x) at points (t, t = − 1, − 2, ..., , where θ(t, an uncorrelated field. Formulas for computing value mean-square error and spectral characteristic estimate functional Aζ obtained. The least favourable densities minimax (robust) characteristics estimates determined some special classes densities.

参考文章(37)
A. M. I︠A︡glom, Correlation theory of stationary and related random functions Springer-Verlag. ,(1987)
Tata Subba Rao, Gyorgy Terdik, Multivariate Non-Linear Regression with Applications Springer, New York, NY. pp. 431- 473 ,(2006) , 10.1007/0-387-36062-X_19
M. I. I︠A︡drenko, A. V. Balakrishnan, Spectral theory of random fields ,(1983)
Christopher K. Wikle, Noel A. C. Cressie, Statistics for Spatio-Temporal Data ,(2011)
William A. Gardner, Cyclostationarity in Communications and Signal Processing IEEE Press. ,(1994)
Carlo Gaetan, Xavier Guyon, Spatial Statistics and Modeling ,(2010)
Murray Rosenblatt, Review: A. M. Yaglom, Correlation theory of stationary and random functions vol. I; Basic results, vol. II, Supplementary notes and references Bulletin of the American Mathematical Society. ,vol. 20, pp. 207- 211 ,(1989)