Adaptive probabilities of crossover and mutation in genetic algorithms

作者: M. Srinivas , L.M. Patnaik

DOI: 10.1109/21.286385

关键词: Adaptive algorithmDiscrete mathematicsMultimodal functionMutation (genetic algorithm)Computer scienceGenetic algorithmCrossoverOperator (computer programming)PopulationAlgorithm

摘要: In this paper we describe an efficient approach for multimodal function optimization using genetic algorithms (GAs). We recommend the use of adaptive probabilities of crossover and …

参考文章(20)
Bradley Korb, David E. Goldberg, Kalyanmoy Deb, Messy genetic algorithms revisited: studies in mixed size and scale Complex Systems. ,vol. 4, ,(1990)
Lawrence Davis, Bit-Climbing, Representational Bias, and Test Suite Design. ICGA. pp. 18- 23 ,(1991)
David E. Goldberg, Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis. Complex Systems. ,vol. 3, ,(1989)
D. J. Smith, J. R. C. Holland, I. M. Oliver, A study of permutation crossover operators on the traveling salesman problem international conference on genetic algorithms. pp. 224- 230 ,(1987)
K. Dejong, An analysis of the behavior of a class of genetic adaptive systems Ph. D. Thesis, University of Michigan. ,(1975)
Jürgen Hesser, Reinhard Männer, Towards an Optimal Mutation Probability for Genetic Algorithms parallel problem solving from nature. pp. 23- 32 ,(1990) , 10.1007/BFB0029727
Lawrence Davis, Adapting operator probabilities in genetic algorithms international conference on genetic algorithms. pp. 61- 69 ,(1989)
Richard A. Caruana, J. David Schaffer, Rajarshi Das, Larry J. Eshelman, A study of control parameters affecting online performance of genetic algorithms for function optimization international conference on genetic algorithms. pp. 51- 60 ,(1989)
Bradley Korb, David E. Goldberg, Kalyanmoy Deb, Messy genetic algorithms: motivation, analysis, and first results Complex Systems. ,vol. 3, ,(1989)