Structure-function relationships in a winter flounder antifreeze polypeptide. I. Stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions.

作者: A Chakrabartty , V S Ananthanarayanan , C L Hew

DOI: 10.1016/S0021-9258(18)60465-X

关键词: Hydrogen bondHelixAntifreeze proteinStereochemistrySalt bridge (protein and supramolecular)Amino acidPeptideChemistryHydrophobic effectCircular dichroism

摘要: Abstract The major antifreeze polypeptide (AFP) from winter flounder (37 amino acid residues) is a single alpha-helix. Aspartic and arginine are found, respectively, at the carboxyl-termini. These charged acids ideally located for stabilizing alpha-helical conformation of this AFP by means charge-dipole interaction (Shoemaker, K. R., Kim, P.S., York, E.J., Stewart, J. M., Baldwin, R. L. (1987) Nature 326, 563-567). In order to understand these other molecular interactions that maintain structure, we have carried out chemical synthesis analogs evaluated their conformations circular dichroism spectroscopy. We synthesized entire molecule (37-mer) six COOH-terminal peptide fragments (36-, 33-, 27-, 26-, 16-, 15-mers). Peptides containing acidic NH2-terminal residues displayed greater helix formation thermal stability compared those peptides similar size, but with neutral residues. Helix was maximum above pH 9.2. also pH-dependent sensitivity changes in ionic strength. reduced presence acetonitrile. conclude most likely stabilized by: between terminal dipole, charge Lys18 Glu22 (either salt bridge or hydrogen bond), hydrophobic interactions.

参考文章(32)
V.S. Ananthanarayanan, Choy L. Hew, Structural studies on the freezing-point-depressing protein of the winter flounder Pseudopleuronectes americanus Biochemical and Biophysical Research Communications. ,vol. 74, pp. 685- 689 ,(1977) , 10.1016/0006-291X(77)90357-6
Choy L. HEW, Nam C. WANG, Sixu YAN, Hongyu CAI, Anne SCLATER, Garth L. FLETCHER, Biosynthesis of antifreeze polypeptides in the winter flounder FEBS Journal. ,vol. 160, pp. 267- 272 ,(1986) , 10.1111/J.1432-1033.1986.TB09966.X
Christian B. Anfinsen, Hiroshi Taniuchi, An Experimental Approach to the Study of the Folding of Staphylococcal Nuclease Journal of Biological Chemistry. ,vol. 244, pp. 3864- 3875 ,(1969) , 10.1016/S0021-9258(17)36429-3
N F Ng, K Y Trinh, C L Hew, Structure of an antifreeze polypeptide precursor from the sea raven, Hemitripterus americanus. Journal of Biological Chemistry. ,vol. 261, pp. 15690- 15695 ,(1986) , 10.1016/S0021-9258(18)66772-9
T S Burcham, D T Osuga, Y Yeh, R E Feeney, A kinetic description of antifreeze glycoprotein activity. Journal of Biological Chemistry. ,vol. 261, pp. 6390- 6397 ,(1986) , 10.1016/S0021-9258(19)84574-X
Max F. Perutz, Angela M. Gronenborn, G.Marius Clore, Janice H. Fogg, Daniel T.-b. Shih, The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of α-helices Journal of Molecular Biology. ,vol. 183, pp. 491- 498 ,(1985) , 10.1016/0022-2836(85)90016-6
Robert A. Brown, Yin Yeh, Timothy S. Burcham, Robert E. Feeney, Direct evidence for antifreeze glycoprotein adsorption onto an ice surface Biopolymers. ,vol. 24, pp. 1265- 1270 ,(1985) , 10.1002/BIP.360240713
James Edward Brown, Werner A. Klee, Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry. ,vol. 10, pp. 470- 476 ,(1971) , 10.1021/BI00779A019