Fractional Temporal Electrodynamics

作者: Vasily E. Tarasov

DOI: 10.1007/978-3-642-14003-7_16

关键词: Magnetic fieldElectromagnetic fieldPhysicsElectronDielectricQuantum electrodynamicsPolarization densityFractional calculusElectromagnetic radiationExact solutions in general relativity

摘要: The dielectric susceptibility of a wide class materials follows, over extended frequency ranges, fractional power-law dependence that is called the “universal” response. electromagnetic fields in such media can be described by differential equations (Tarasov, 2008a,b) with time derivatives non-integer order. An exact solution for magnetic field derived. We obtain describe Curie-von Schweidler and Gauss’ laws 2008a). These are represented demonstrate damping 2008b). typical features waves common to materials, regardless type physical structure, chemical composition, or nature polarizing species, whether dipoles, electrons ions.

参考文章(37)
Om P. Agrawal, Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain Nonlinear Dynamics. ,vol. 29, pp. 145- 155 ,(2002) , 10.1023/A:1016539022492
Alberto Carpinteri, Francesco Mainardi, Fractals and fractional calculus in continuum mechanics Springer-Verlag. ,(1997) , 10.1007/978-3-7091-2664-6
A. K. Jonscher, The ‘universal’ dielectric response Nature. ,vol. 267, pp. 673- 679 ,(1977) , 10.1038/267673A0
Hari M Srivastava, Anatoly A Kilbas, Juan J Trujillo, Theory and Applications of Fractional Differential Equations ,(2006)
Ya.E. Ryabov, Yuri Feldman, Novel approach to the analysis of the non-Debye dielectric spectrum broadening Physica A-statistical Mechanics and Its Applications. ,vol. 314, pp. 370- 378 ,(2002) , 10.1016/S0378-4371(02)01076-2
Vasily E Tarasov, Universal electromagnetic waves in dielectric Journal of Physics: Condensed Matter. ,vol. 20, pp. 175223- ,(2008) , 10.1088/0953-8984/20/17/175223
Alexander V. Milovanov, Kristoffer Rypdal, Jens Juul Rasmussen, Stretched exponential relaxation and ac universality in disordered dielectrics Physical Review B. ,vol. 76, pp. 104201- ,(2007) , 10.1103/PHYSREVB.76.104201