Photoferrotrophs thrive in an Archean Ocean analogue

作者: S. A. Crowe , C. Jones , S. Katsev , C. Magen , A. H. O'Neill

DOI: 10.1073/PNAS.0805313105

关键词: PhototrophGreen sulfur bacteriaChemoclineChemistryEarth scienceChlorophyll aArchaeaAnoxygenic photosynthesisBanded iron formationPhotic zoneEcology

摘要: Abstract Considerable discussion surrounds the potential role of anoxygenic phototrophic Fe(II)-oxidizing bacteria in both genesis Banded Iron Formations (BIFs) and early marine productivity. However, phototrophs have yet to be identified modern environments with comparable chemistry physical structure ancient Fe(II)-rich (ferruginous) oceans from which BIFs deposited. Lake Matano, Indonesia, eighth deepest lake world, is such an environment. Here, sulfate scarce ( 100-m-deep chemocline. Within this sulfide-poor, Fe(II)-rich, illuminated chemocline, we find a populous assemblage green sulfur (GSB). These GSB represent large component Matano community, bacteriochlorophyll e, pigment produced by low-light-adapted GSB, nearly as abundant chlorophyll lake's euphotic surface waters. The dearth sulfide chemocline requires that are sustained oxidation Fe(II), supply. By analogy, propose similar microbial communities, including populations reducers photoferrotrophic likely populated chemoclines ferruginous oceans, driving fueling anoxygenic photosynthesis banded iron formation green bacteria iron oxidation Lake

参考文章(48)
Jörg Overmann, Mahoney Lake: A Case Study of the Ecological Significance of Phototrophic Sulfur Bacteria Advances in Microbial Ecology. ,vol. 15, pp. 251- 288 ,(1997) , 10.1007/978-1-4757-9074-0_6
David J. Des Marais, The biogeochemistry of hypersaline microbial mats. Advances in Microbial Ecology. ,vol. 14, pp. 251- 274 ,(1995) , 10.1007/978-1-4684-7724-5_6
George W. Luther, Tim F. Rozan, Martial Taillefert, Donald B. Nuzzio, Carol Di Meo, Timothy M. Shank, Richard A. Lutz, S. Craig Cary, Chemical speciation drives hydrothermal vent ecology. Nature. ,vol. 410, pp. 813- 816 ,(2001) , 10.1038/35071069
B. K. Pierson, M. N. Parenteau, B. M. Griffin, Phototrophs in High-Iron-Concentration Microbial Mats: Physiological Ecology of Phototrophs in an Iron-Depositing Hot Spring Applied and Environmental Microbiology. ,vol. 65, pp. 5474- 5483 ,(1999) , 10.1128/AEM.65.12.5474-5483.1999
A Ehrenreich, F Widdel, Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology. ,vol. 60, pp. 4517- 4526 ,(1994) , 10.1128/AEM.60.12.4517-4526.1994
Karl K. Turekian, Heinrich D. Holland, Treatise on geochemistry Elsevier. ,(2014)
Donald E Canfield, Kirsten S Habicht, BO Thamdrup, The Archean Sulfur Cycle and the Early History of Atmospheric Oxygen Science. ,vol. 288, pp. 658- 661 ,(2000) , 10.1126/SCIENCE.288.5466.658
Gerd Slawyk, Yves Collos, Jean-Christian Auclair, The use of the 13 C and 15 N isotopes for the simultaneous measurement of carbon and nitrogen turnover rates in marine phytoplankton1 Limnology and Oceanography. ,vol. 22, pp. 925- 932 ,(1977) , 10.4319/LO.1977.22.5.0925
T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, G. L. Andersen, Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB Applied and Environmental Microbiology. ,vol. 72, pp. 5069- 5072 ,(2006) , 10.1128/AEM.03006-05