Local tangent space alignment and relevance vector machine as nonlinear methods for estimating sensory quality of tea using NIR spectroscopy

作者: Peng Liu , Xiaoyu Zhu , Xiao Hu , Aihua Xiong , Jianping Wen

DOI: 10.1016/J.VIBSPEC.2019.05.005

关键词: Principal component analysisApproximation errorLocal tangent space alignmentMathematicsPattern recognitionCalibrationReduction (complexity)Relevance vector machineKernel principal component analysisDimension (vector space)Artificial intelligence

摘要: … Traditionally, the quality of tea is mainly evaluated through the … Tea Tasters on the basis of the appearance of dry tea and infused tea leaves, aroma, liquor color and taste of brewed tea …

参考文章(46)
Ravinesh C. Deo, Pijush Samui, Dookie Kim, Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models Stochastic Environmental Research and Risk Assessment. ,vol. 30, pp. 1769- 1784 ,(2016) , 10.1007/S00477-015-1153-Y
Qin Ouyang, Quansheng Chen, Jiewen Zhao, Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. ,vol. 154, pp. 42- 46 ,(2016) , 10.1016/J.SAA.2015.10.011
Shaojiang Dong, Lili Chen, Baoping Tang, Xiangyang Xu, Zhengyuan Gao, Juan Liu, Rotating Machine Fault Diagnosis Based on Optimal Morphological Filter and Local Tangent Space Alignment Shock and Vibration. ,vol. 2015, pp. 1- 9 ,(2015) , 10.1155/2015/893504
Gözde Gürdeniz, Louise Hansen, Morten Arendt Rasmussen, Evrim Acar, Anja Olsen, Jane Christensen, Thaer Barri, Anne Tjønneland, Lars Ove Dragsted, Patterns of time since last meal revealed by sparse PCA in an observational LC–MS based metabolomics study Metabolomics. ,vol. 9, pp. 1073- 1081 ,(2013) , 10.1007/S11306-013-0525-X
Yun Zhang, Benwei Li, Wen Wang, Tao Sun, Xinyi Yang, Lin Wang, Supervised locally tangent space alignment for machine fault diagnosis Journal of Mechanical Science and Technology. ,vol. 28, pp. 2971- 2977 ,(2014) , 10.1007/S12206-014-0704-3
Hui Zou, Trevor Hastie, Robert Tibshirani, Sparse Principal Component Analysis Journal of Computational and Graphical Statistics. ,vol. 15, pp. 265- 286 ,(2006) , 10.1198/106186006X113430
B. Raducanu, F. Dornaika, A supervised non-linear dimensionality reduction approach for manifold learning Pattern Recognition. ,vol. 45, pp. 2432- 2444 ,(2012) , 10.1016/J.PATCOG.2011.12.006
Ka In Wong, Pak Kin Wong, Chun Shun Cheung, Chi Man Vong, Modelling of diesel engine performance using advanced machine learning methods under scarce and exponential data set soft computing. ,vol. 13, pp. 4428- 4441 ,(2013) , 10.1016/J.ASOC.2013.06.006
Zhen-yue Zhang, Hong-yuan Zha, Principal manifolds and nonlinear dimensionality reduction via tangent space alignment Journal of Shanghai University (english Edition). ,vol. 8, pp. 406- 424 ,(2004) , 10.1007/S11741-004-0051-1