The role of nitric oxide on the zonally averaged structure of the thermosphere: Solstice conditions for solar cycle maximum

作者: J.-Cl. Gérard , R.G. Roble

DOI: 10.1016/0032-0633(88)90134-1

关键词: Solar maximumThermosphereAtmospheric circulationGeomagnetic stormAtmospheric temperatureAtmospheric sciencesPhysicsSolsticeAtmosphereSolar cycle

摘要: Abstract A zonally averaged chemical-dynamical model of the Earth's thermosphere is used to investigate importance nitric oxide 5.3-μm cooling in controlling dynamic structure thermosphere. The calculates circulation, temperature, major atmospheric constituents, and oddnitrogen distributions self-consistently for solstice conditions during solar cycle minimum. NO infrared competes with downward molecular conduction upper reaches a maximum ∼ 500 K day −1 near 170 km at high summer latitudes. primary effect weaken summer-to-winter latitudinal temperature gradient, which turn weakens meridional circulation. In reduces pole difference by about 45 an 8 ms reduction wind velocity. There are corresponding reductions vertical mean zonal velocities. circulation gradient results changes composition −40% O 2 +15% suggest that has important on overall thermosphere, it should be particularly geomagnetic storms when densities neutral gas increase substantially.

参考文章(45)
V.I. Lazarev, Absorption of the Energy of an Electron Beam in the Upper Atmosphere Geomagnetism and Aeronomy. ,vol. 7, pp. 219- ,(1967)
A. T. Stair, J. C. Ulwick, K. D. Baker, D. J. Baker, Rocketborne observations of atmospheric infrared emissions in the auroral region ASSL. ,vol. 51, pp. 335- 346 ,(1975) , 10.1007/978-94-010-1799-2_25
G. Kockarts, NEUTRAL ATMOSPHERE MODELING Atmospheres of Earth and the Planets. ,vol. 51, pp. 235- 243 ,(1975) , 10.1007/978-94-010-1799-2_16
Marsha R. Torr, D. G. Torr, Ionization frequencies for solar cycle 21: Revised Journal of Geophysical Research. ,vol. 90, pp. 6675- 6678 ,(1985) , 10.1029/JA090IA07P06675
W. T. Rawlins, G. E. Caledonia, J. J. Gibson, A. T. Stair, Infrared emission from NO (Δυ=1) in an aurora: Spectral analysis and kinetic interpretation of HIRIS measurements Journal of Geophysical Research. ,vol. 86, pp. 1313- 1324 ,(1981) , 10.1029/JA086IA03P01313
T.E. Cravens, J.-C. Gérard, A.I. Stewart, D.W. Rusch, The latitudinal gradient of nitric oxide in the thermosphere Journal of Geophysical Research. ,vol. 84, pp. 2675- 2680 ,(1979) , 10.1029/JA084IA06P02675
W. Swider, Daytime nitric oxide at the base of the thermosphere Journal of Geophysical Research. ,vol. 83, pp. 4407- 4410 ,(1978) , 10.1029/JA083IA09P04407
B. F. Gordiets, Yu. N. Kulikov, M. N. Markov, M. Ya. Marov, Numerical modelling of the thermospheric heat budget Journal of Geophysical Research. ,vol. 87, pp. 4504- 4514 ,(1982) , 10.1029/JA087IA06P04504
D R Bates, The Temperature of the Upper Atmosphere Proceedings of the Physical Society. Section B. ,vol. 64, pp. 805- 821 ,(1951) , 10.1088/0370-1301/64/9/312
K. U. GROSSMANN, D. OFFERMANN, Atomic oxygen emission at 63 µm as a cooling mechanism in the thermosphere and ionosphere Nature. ,vol. 276, pp. 594- 595 ,(1978) , 10.1038/276594A0