The classical theory of canonical general relativity

作者: R. Beig

DOI: 10.1007/3-540-58339-4_15

关键词: Theory of relativityProblem of timeDoubly special relativityMathematical physicsFour-forceClassical physicsSpecial relativity (alternative formulations)Test theories of special relativityMathematics of general relativityPhysics

摘要:

参考文章(31)
Andrew J. Hanson, Claudio Teitelboim, Tullio Regge, Constrained Hamiltonian Systems Accademia Nazionale dei Lincei. ,(1976)
J. E. Marsden, A. E. Fischer, Topics in the Dynamics or General Relativity igsg. pp. 322- 395 ,(1979)
Abhay ASHTEKAR, Luca BOMBELLI, Oscar REULA, THE COVARIANT PHASE SPACE OF ASYMPTOTICALLY FLAT GRAVITATIONAL FIELDS Mechanics, Analysis and Geometry: 200 Years After Lagrange. pp. 417- 450 ,(1991) , 10.1016/B978-0-444-88958-4.50021-5
Abhay Ashtekar, Notes prepared in collaboration with Ranjeet S. Tate, Lectures on Non-Perturbative Canonical Gravity ,(1991)
John M. Lee, Thomas H. Parker, The Yamabe problem Bulletin of the American Mathematical Society. ,vol. 17, pp. 37- 91 ,(1987) , 10.1090/S0273-0979-1987-15514-5
R Beig, N óMurchadha, The Poincaré group as the symmetry group of canonical general relativity Annals of Physics. ,vol. 174, pp. 463- 498 ,(1987) , 10.1016/0003-4916(87)90037-6
Lars Andersson, Momenta and reduction for general relativity Journal of Geometry and Physics. ,vol. 4, pp. 289- 314 ,(1987) , 10.1016/0393-0440(87)90016-7