Induction motor fault detection and diagnosis using supervised and unsupervised neural networks

作者: S. Premrudeepreechacharn , T. Utthiyoung , K. Kruepengkul , P. Puongkaew

DOI: 10.1109/ICIT.2002.1189869

关键词: Unsupervised learningInduction motorArtificial neural networkSupervised learningMachine learningEngineeringFault detection and isolationArtificial intelligenceCondition monitoringFault (power engineering)

摘要: Successful and reliable motor fault detection diagnosis requires expertise knowledge. Neural network technologies can be used to provide inexpensive but effective mechanism This paper presents two neural networks algorithms: supervised unsupervised types with applications induction problems. The algorithm was simulated its performance verified on various types. Simulation results illustrated that, after training the network, system is able detect faulty machine.

参考文章(13)
W. Deleroi, Der Stabbruch im Käfigläufer eines Asynchronmotors Archiv für Elektrotechnik. ,vol. 67, pp. 91- 99 ,(1984) , 10.1007/BF01577117
Laurene V. Fausett, Fundamentals of neural networks ,(1993)
A. Gaylard, Acoustic evaluation of faults in electrical machines Seventh International Conference on Electrical Machines and Drives. pp. 147- 150 ,(1995) , 10.1049/CP:19950852
G.B. Kliman, W.J. Premerlani, B. Yazici, R.A. Koegl, J. Mazereeuw, Sensorless, online motor diagnostics IEEE Computer Applications in Power. ,vol. 10, pp. 39- 43 ,(1997) , 10.1109/67.582451
R.R. Schoen, T.G. Habetler, F. Kamran, R.G. Bartheld, Motor bearing damage detection using stator current monitoring ieee industry applications society annual meeting. ,vol. 1, pp. 110- 116 ,(1994) , 10.1109/IAS.1994.345491
S. Altug, Mo-Yuen Chen, H.J. Trussell, Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis IEEE Transactions on Industrial Electronics. ,vol. 46, pp. 1069- 1079 ,(1999) , 10.1109/41.807988
R.R. Schoen, B.K. Lin, T.G. Habetler, J.H. Schlag, S. Farag, An unsupervised, on-line system for induction motor fault detection using stator current monitoring ieee industry applications society annual meeting. ,vol. 1, pp. 103- 109 ,(1994) , 10.1109/IAS.1994.345492
F. Filippetti, G. Franceschini, C. Tassoni, P. Vas, AI techniques in induction machines diagnosis including the speed ripple effect ieee industry applications society annual meeting. ,vol. 1, pp. 655- 662 ,(1996) , 10.1109/28.658729
F. Filippetti, G. Franceschini, C. Tassoni, P. Vas, Broken bar detection in induction machines: comparison between current spectrum approach and parameter estimation approach ieee industry applications society annual meeting. ,vol. 1, pp. 95- 102 ,(1994) , 10.1109/IAS.1994.345493