Conditional complexity and codes

作者: Andrej A. Muchnik

DOI: 10.1016/S0304-3975(01)00033-0

关键词: Kolmogorov complexityKolmogorov entropyMathematicsBinary stringsInformation theoryDiscrete mathematicsAlgorithmic information theoryCombinatorics

摘要: Let x and y be binary strings. We prove that there exists a program p of size about K(x|y) maps tox has small complexity when is known (K(p|x)0)*#8776;0). Having in mind the parallelism between Shannon information theory algorithmic theory, one can say this result parallel to Wolf-Slepian Korner-Csiszar-Marton theorems, see (I. Csiszar J. Korner, Information Coding Theorems for Discrete Memoryless Systems, Akademiai Kiado, Budapest, 1981). show also any three stringsx,y,z length at most n shortest both z (i.e., p(y)=p(z)=x) equals max(K(x|y),K(x|z)+O(logn.

参考文章(7)
Andrei A. Muchnik, Alexei L. Semenov, Multi-conditional Descriptions and Codes in Kolmogorov Complexity Electronic Colloquium on Computational Complexity. ,vol. 7, ,(2000)
Lance Fortnow, Sophie Laplante, Nearly Optimal Language Compression Using Extractors symposium on theoretical aspects of computer science. ,vol. 1373, pp. 84- 93 ,(1998) , 10.1007/BFB0028551
Nikolai K. Vereshchagin, Michael V. Vyugin, Independent minimum length programs to translate between given strings Theoretical Computer Science. ,vol. 271, pp. 131- 143 ,(2002) , 10.1016/S0304-3975(01)00036-6
K.Yu. Gorbunov, On a complexity of the formula A∨B ⇒C Theoretical Computer Science. ,vol. 207, pp. 383- 386 ,(1998) , 10.1016/S0304-3975(98)00074-7
C.H. Bennett, P. Gacs, Ming Li, P.M.B. Vitanyi, W.H. Zurek, Information distance IEEE Transactions on Information Theory. ,vol. 44, pp. 1407- 1423 ,(1998) , 10.1109/18.681318
N.K. Vereshchagin, M.V. Vyugin, Independent minimum length programs to translate between given strings conference on computational complexity. pp. 138- 144 ,(2000) , 10.1109/CCC.2000.856744