Degradation Classification on Ancient Document Image Based on Deep Neural Networks

作者: Khairun Saddami , Khairul Munadi , Fitri Arnia , None

DOI: 10.1109/ICOIACT50329.2020.9332042

关键词: Epoch (reference date)BenchmarkingProcess (computing)Artificial neural networkImage (mathematics)Ancient documentPattern recognitionComputer scienceDegradation (telecommunications)Artificial intelligenceSet (abstract data type)

摘要: In this paper, we study degradation classification on ancient document images using three pre-trained models of benchmarking CNN architecture, i.e., Resnet101, Mobilenet V2, and Shufflenet. We use Document Image Binarization Contest (DIBCO), Persian Heritage Dataset (PHIBD), private Jawi datasets for experimental purposes. grouped the into four categories, namely: bleed-through/showthrough/ink-bleed, faint-text low contrast, smear-spot-stain, uniform degradation. training progress, set optimizer to ADAM, initial learn rate $10 ^{-4}$, epoch values: 5, 25, 50 epoch. To test model, conduct two testing stages: (1) unblind testing, (2) blind testing. The result shows that Shufflenet with 25 achieved 100% 85% accuracy respectively, obtained fastest computational process. concluded could be chosen in classifying degradations based its time.

参考文章(29)
Anna Tonazzini, Emanuele Salerno, Luigi Bedini, Fast correction of bleed-through distortion in grayscale documents by a blind source separation technique International Journal on Document Analysis and Recognition. ,vol. 10, pp. 17- 25 ,(2007) , 10.1007/S10032-006-0015-Z
Rafael Dueire Lins, Serene Banergee, Marcelo Thielo, Automatically detecting and classifying noises in document images acm symposium on applied computing. pp. 33- 39 ,(2010) , 10.1145/1774088.1774096
S. M. Ayatollahi, H. Z. Nafchi, Persian heritage image binarization competition (PHIBC 2012) 2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA). pp. 1- 4 ,(2013) , 10.1109/PRIA.2013.6528442
Muhammad Zeshan Afzal, Samuele Capobianco, Muhammad Imran Malik, Simone Marinai, Thomas M. Breuel, Andreas Dengel, Marcus Liwicki, Deepdocclassifier: Document classification with deep Convolutional Neural Network international conference on document analysis and recognition. pp. 1111- 1115 ,(2015) , 10.1109/ICDAR.2015.7333933
Ioannis Pratikakis, Basilis Gatos, Konstantinos Ntirogiannis, H-DIBCO 2010 - Handwritten Document Image Binarization Competition international conference on frontiers in handwriting recognition. pp. 727- 732 ,(2010) , 10.1109/ICFHR.2010.118
Ilya Sutskever, Geoffrey E. Hinton, Alex Krizhevsky, ImageNet Classification with Deep Convolutional Neural Networks neural information processing systems. ,vol. 25, pp. 1097- 1105 ,(2012)
Basilis Gatos, Konstantinos Ntirogiannis, Ioannis Pratikakis, ICDAR 2009 Document Image Binarization Contest (DIBCO 2009) international conference on document analysis and recognition. pp. 1375- 1382 ,(2009) , 10.1109/ICDAR.2009.246
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition computer vision and pattern recognition. pp. 770- 778 ,(2016) , 10.1109/CVPR.2016.90
Aysegul Ucar, Yakup Demir, Cuneyt Guzelis, Moving towards in object recognition with deep learning for autonomous driving applications international symposium on innovations in intelligent systems and applications. pp. 1- 5 ,(2016) , 10.1109/INISTA.2016.7571862
Ioannis Pratikakis, Konstantinos Zagoris, George Barlas, Basilis Gatos, ICFHR2016 Handwritten Document Image Binarization Contest (H-DIBCO 2016) international conference on frontiers in handwriting recognition. pp. 619- 623 ,(2016) , 10.1109/ICFHR.2016.0118