From small fullerenes to the graphene limit: A harmonic force‐field method for fullerenes and a comparison to density functional calculations for Goldberg–Coxeter fullerenes up to C980

作者: Lukas N. Wirz , Ralf Tonner , Andreas Hermann , Rebecca Sure , Peter Schwerdtfeger

DOI: 10.1002/JCC.23894

关键词: Molecular physicsExtrapolationFullereneGrapheneDensity functional theoryProjector augmented wave methodRoot mean squareComputational chemistryMaterials scienceForce field (chemistry)Periodic boundary conditions

摘要: We introduce a simple but computationally very efficient harmonic force field, which works for all fullerene structures and includes bond stretching, bending, torsional motions as implemented into our open-source code Fullerene. This gives accurate geometries reasonably vibrational frequencies with root mean square deviations of up to 0.05 A distances 45.5 cm(-1) compared more elaborate density functional calculations. The obtained were used calculations Goldberg-Coxeter fullerenes C980. rather large range making it possible extrapolate the graphene limit. Periodic boundary condition using theory (DFT) within projector augmented wave method gave an energy difference between -8.6 -8.8 kcal/mol at various levels DFT reaction C60 →graphene (per carbon atom) in excellent agreement linear extrapolation limit (-8.6 Perdew-Burke-Ernzerhof level theory).

参考文章(52)
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C 60 : Buckminsterfullerene Nature. ,vol. 318, pp. 162- 163 ,(1985) , 10.1038/318162A0
The Mathematics and Topology of Fullerenes The Mathematics and Topology of Fullerenes. Series: Carbon Materials: Chemistry and Physics. ,vol. 4, ,(2011) , 10.1007/978-94-007-0221-9
Saul A. Teukolsky, Brian P. Flannery, William T. Vetterling, William H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Computing Cambridge University Press. ,(2007)
Peter Schwerdtfeger, Lukas Wirz, James Avery, Program Fullerene: A software package for constructing and analyzing structures of regular fullerenes Journal of Computational Chemistry. ,vol. 34, pp. 1508- 1526 ,(2013) , 10.1002/JCC.23278
J. L. Feldman, J. Q. Broughton, L. L. Boyer, D. E. Reich, M. D. Kluge, Intramolecular-force-constant model for C60. Physical Review B. ,vol. 46, pp. 12731- 12736 ,(1992) , 10.1103/PHYSREVB.46.12731
Dirk Bakowies, Walter Thiel, MNDO Study of Large Carbon Clusters Journal of the American Chemical Society. ,vol. 113, pp. 3704- 3714 ,(1991) , 10.1021/JA00010A012
P. E. Blöchl, Projector augmented-wave method Physical Review B. ,vol. 50, pp. 17953- 17979 ,(1994) , 10.1103/PHYSREVB.50.17953
B I Dunlap, J C Boettger, Local-density-functional study of the fullerenes, graphene and graphite Journal of Physics B. ,vol. 29, pp. 4907- 4913 ,(1996) , 10.1088/0953-4075/29/21/004
K. HEDBERG, L. HEDBERG, D. S. BETHUNE, C. A. BROWN, H. C. DORN, R. D. JOHNSON, M. DE VRIES, Bond lengths in free molecules of buckminsterfullerene, c60, from gas-phase electron diffraction. Science. ,vol. 254, pp. 410- 412 ,(1991) , 10.1126/SCIENCE.254.5030.410