Testing the local volatility assumption: a statistical approach

作者: Mark Podolskij , Mathieu Rosenbaum

DOI: 10.1007/S10436-011-0180-Z

关键词: SABR volatility modelStochastic volatilityVolatility risk premiumVolatility swapHeston modelLocal volatilityImplied volatilityVolatility smileMathematical economicsEconometricsEconomics

摘要: In practice, the choice of using a local volatility model or stochastic is made according to their respective ability fit implied surfaces. this paper, we adopt different point view. Indeed, purely statistical methodology, design new procedures aiming at testing assumption for price dynamics, against alternative model. These test are based only on historical data and do not require any calibration via option prices. We also provide convincing simulation study an empirical analysis future contracts interest rates.

参考文章(21)
Ole E. Barndorff–Nielsen, Svend Erik Graversen, Jean Jacod, Mark Podolskij, Neil Shephard, A central limit theorem for realised power and bipower variations of continuous semimartingales Research Papers in Economics. pp. 33- 68 ,(2004) , 10.1007/978-3-540-30788-4_3
Laurent Duvernet, Christian Y. Robert, Mathieu Rosenbaum, Testing the type of a semi-martingale: Itō against multifractal Electronic Journal of Statistics. ,vol. 4, pp. 1300- 1323 ,(2010) , 10.1214/10-EJS585
Jean Jacod, Antoine Lejay, Denis Talay, Estimation of the Brownian dimension of a continuous It\^{o} process arXiv: Statistics Theory. ,(2008) , 10.3150/07-BEJ6190
Jean Jacod, Albert N Shiryaev, Limit Theorems for Stochastic Processes ,(1987)
JOHN HULL, ALAN WHITE, The Pricing of Options on Assets with Stochastic Volatilities Journal of Finance. ,vol. 42, pp. 281- 300 ,(1987) , 10.1111/J.1540-6261.1987.TB02568.X
Alexander Alvarez, Fabien Panloup, Monique Pontier, Nicolas Savy, Estimation of the instantaneous volatility Statistical Inference for Stochastic Processes. ,vol. 15, pp. 27- 59 ,(2012) , 10.1007/S11203-011-9062-2
Silja Kinnebrock, Mark Podolskij, A Note on the Central Limit Theorem for Bipower Variation of General Functions. Stochastic Processes and their Applications. ,vol. 118, pp. 1056- 1070 ,(2008) , 10.1016/J.SPA.2007.07.009