Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate

作者: D. Bischoff , T. Krähenmann , S. Dröscher , M. A. Gruner , C. Barraud

DOI: 10.1063/1.4765345

关键词: GrapheneGraphene nanoribbonsSubstrate (electronics)Materials scienceElectron mobilityFabricationSilicon dioxideGraphene foamIonNanotechnology

摘要: We report on the fabrication and electrical characterization of both single layer graphene micron-sized devices nanoribbons a hexagonal boron nitride substrate. show that have significantly higher mobility lower disorder density compared to fabricated silicon dioxide substrate in agreement with previous findings. The transport characteristics reactive-ion-etched nitride, however, appear be very similar those ribbons perform detailed study order highlight similarities as well differences. Our findings suggest edges an important influence nanodevices.

参考文章(36)
Jeroen B. Oostinga, Benjamin Sacépé, Monica F. Craciun, Alberto F. Morpurgo, Magnetotransport through graphene nanoribbons Physical Review B. ,vol. 81, pp. 193408- ,(2010) , 10.1103/PHYSREVB.81.193408
Yu-Ming Lin, Vasili Perebeinos, Zhihong Chen, Phaedon Avouris, Electrical observation of subband formation in graphene nanoribbons Physical Review B. ,vol. 78, pp. 161409- ,(2008) , 10.1103/PHYSREVB.78.161409
Takashi Taniguchi, Lieven M K Vandersypen, Kenji Watanabe, Tim A Baart, Stefanie C M Driessen, Augustinus Stijn M Goossens, Gate-Defined Confinement in Bilayer Graphene-Hexagonal Boron Nitride Hybrid Devices Nano Letters. ,vol. 12, pp. 4656- 4660 ,(2012) , 10.1021/NL301986Q
Huili, Alan C. Seabaugh, Kristof Tahy, Wan Sik Hwang, Debdeep Jena, Xing, Xuesong Li, Chun-Yung Sung, Transport Properties of Graphene Nanoribbon Transistors on Transport Properties of Graphene Nanoribbon Transistors on Chemical-Vapor-Deposition Grown Wafer-Scale Graphene arXiv: Mesoscale and Nanoscale Physics. ,(2012) , 10.1063/1.4716983
Dmitriy A. Dikin, Richard D. Piner, Rodney S. Ruoff, Inhwa Jung, Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures. Nano Letters. ,vol. 8, pp. 4283- 4287 ,(2008) , 10.1021/NL8019938
S. Dröscher, H. Knowles, Y. Meir, K. Ensslin, T. Ihn, Coulomb Gap in Graphene Nanoribbons Physical Review B. ,vol. 84, pp. 073405- ,(2011) , 10.1103/PHYSREVB.84.073405
Dong-Keun Ki, Alberto F. Morpurgo, Crossover from Coulomb Blockade to Quantum Hall Effect in Suspended Graphene Nanoribbons Physical Review Letters. ,vol. 108, pp. 266601- ,(2012) , 10.1103/PHYSREVLETT.108.266601
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene Solid State Communications. ,vol. 146, pp. 351- 355 ,(2008) , 10.1016/J.SSC.2008.02.024
Jeremy T. Robinson, James S. Burgess, Chad E. Junkermeier, Stefan C. Badescu, Thomas L. Reinecke, F. Keith Perkins, Maxim K. Zalalutdniov, Jeffrey W. Baldwin, James C. Culbertson, Paul E. Sheehan, Eric S. Snow, Properties of Fluorinated Graphene Films Nano Letters. ,vol. 10, pp. 3001- 3005 ,(2010) , 10.1021/NL101437P
F. Molitor, A. Jacobsen, C. Stampfer, J. Güttinger, T. Ihn, K. Ensslin, Transport gap in side-gated graphene constrictions Physical Review B. ,vol. 79, pp. 075426- ,(2009) , 10.1103/PHYSREVB.79.075426