How to Conjugate C1-Close Group Actions

作者: Karsten Grove , Hermann Karcher

DOI: 10.1007/BF01214029

关键词: MathematicsGroup actionCenter (group theory)Equivariant mapExistential quantificationEmbeddingOrthogonal groupConstant (mathematics)CombinatoricsDifferential (infinitesimal)

摘要: The existence of a map conjugating two Cl-close G-actions has already been proved by Palais [5]. Palais' proof relies essentially on the fact that there exists representation G in an orthogonal group 0 (n) and equivariant embedding M IR". main tool our approach is to define "center mass" for almost constant maps. This enables us specific actions if they are Ca-close. Using this notion center we prove last paragraph differential geometric version theorem:

参考文章(4)
Richard S. Palais, Equivalence of nearby differentiable actions of a compact group Bulletin of the American Mathematical Society. ,vol. 67, pp. 362- 364 ,(1961) , 10.1090/S0002-9904-1961-10617-4
Hermann Karcher, Anwendungen der Alexandrowschen Winkelvergleichss�tze Manuscripta Mathematica. ,vol. 2, pp. 77- 102 ,(1970) , 10.1007/BF01168481
Detlef Gromoll, Wolfgang Meyer, Wilhelm Klingenberg, Riemannsche Geometrie im Großen Lecture Notes in Mathematics. ,vol. 55, ,(1975) , 10.1007/BFB0079185
Halldór I. Elíasson, Geometry of manifolds of maps Journal of Differential Geometry. ,vol. 1, pp. 169- 194 ,(1967) , 10.4310/JDG/1214427887