作者: Karsten Grove , Hermann Karcher
DOI: 10.1007/BF01214029
关键词: Mathematics 、 Group action 、 Center (group theory) 、 Equivariant map 、 Existential quantification 、 Embedding 、 Orthogonal group 、 Constant (mathematics) 、 Combinatorics 、 Differential (infinitesimal)
摘要: The existence of a map conjugating two Cl-close G-actions has already been proved by Palais [5]. Palais' proof relies essentially on the fact that there exists representation G in an orthogonal group 0 (n) and equivariant embedding M IR". main tool our approach is to define "center mass" for almost constant maps. This enables us specific actions if they are Ca-close. Using this notion center we prove last paragraph differential geometric version theorem: