A fast transform for spherical harmonics

作者: Martin J. Mohlenkamp

DOI: 10.1007/BF01261607

关键词: Fourier transformLegendre functionMathematical analysisMathematicsCombinatoricsFourier analysisFast Fourier transformMatrix (mathematics)Fourier seriesSpherical harmonicsTrigonometric series

摘要: Spherical Harmonics arise on the sphere $S\sp2$ in same way that (Fourier) exponential functions $\{e\sp{ik\Theta}\}\sb{k\in {\rm Z}}$ circle. Harmonic series have many of wonderful properties as Fourier series, but lacked one important thing: a numerically stable fast transform analogous to Fast Transform. Without transform, evaluating (or expanding in) computer is slow--for large computations prohibitively slow. This thesis provides transform. For grid $N\sp2$ points sphere, direct calculation has computational complexity ${\cal O}(N\sp4)$, simple separation variables and Transform reduces it O}(N\sp3)$ time. Here we present an algorithm with time O}(N\sp2\log\ \sp2 N)$. The problem quickly application matrices Associated Legendre Functions certain orders. The essential insight although these are dense oscillatory, locally they can be represented efficiently trigonometric functions. We construct adaptive partition each matrix into rectangles such rectangle sparse (two dimensional) local series. entire O}(N\ \log\ N)$ coefficients this non- standard form, constants independent order parameter. It applied time, overhead cost for adaption \log\sp2\ N)$. Adding over orders yields overall O}(N\sp2\

参考文章(18)
R. R. Coifman, Y. Meyer, Remarques sur l'analyse de Fourier à fenêtre Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 312, pp. 259- 261 ,(1991)
T. A. A. B., A. Erdelyi, Tables of Integral Transforms. I The Mathematical Gazette. ,vol. 39, pp. 337- ,(1955) , 10.2307/3608613
W. N. Bailey, E. W. Hobson, The theory of spherical and ellipsoidal harmonics The Mathematical Gazette. ,vol. 16, pp. 214- ,(1932) , 10.2307/3607762
Mladen Victor Wickerhauser, Adapted wavelet analysis from theory to software ,(1994)
Steven A. Orszag, Carl M. Bender, Advanced mathematical methods for scientists and engineers ,(1978)
Christoph M. Thiele, Lars F. Villemoes, A Fast Algorithm for Adapted Time–Frequency Tilings Applied and Computational Harmonic Analysis. ,vol. 3, pp. 91- 99 ,(1996) , 10.1006/ACHA.1996.0009
B. Bradie, R. Coifman, A. Grossmann, Fast Numerical Computations of Oscillatory Integrals Related to Acoustic Scattering, I Applied and Computational Harmonic Analysis. ,vol. 1, pp. 94- 99 ,(1993) , 10.1006/ACHA.1993.1007
L. D. Landau, J. S. Bell, J. B. Sykes, E. M. Lifshitz, M. E. Rose, Quantum mechanics: Non-relativistic theory, ,(1965)
Mark Elowitz, Frank Hill, Thomas L Duvall, A test of a modified algorithm for computing spherical harmonic coefficients using an FFT Journal of Computational Physics. ,vol. 80, pp. 506- 511 ,(1989) , 10.1016/0021-9991(89)90115-0