Robust unscented Kalman filter for visual servoing system

作者: M. Salehian , S. RayatDoost , H. D. Taghirad

DOI: 10.1109/ICCIAUTOM.2011.6356799

关键词: Computer visionUnscented transformNonlinear systemEstimatorVisual servoingControl theoryExtended Kalman filterArtificial intelligenceComputer scienceRobustness (computer science)PoseKalman filter

摘要: Abstract — This paper presents arobust pose estimator for visual servoing system. Although various filters has been used as estimators, very limited research focused on the stability and robustness of estimators. UKF or EKF based is one most celebrated approaches in uncertain noisy environment nonlinear observations. However convergence these subject to some restrictive conditions practice. In order obtain a robust converging filter, estimation problem system decomposed an unscented Kalman observer (UKO) cascade with filter (KF). structure inverts certain addition linear estimation. Additionally, modified principal component analysis (PCA) feature extractor extended this paper, which shown be environment. The reported experimental results verify effectiveness proposed

参考文章(19)
H.D. Taghirad, S.F. Atashzar, M. Shahbazi, Robust solution to three-dimensional pose estimation using composite extended Kalman observer and Kalman filter Iet Computer Vision. ,vol. 6, pp. 140- 152 ,(2012) , 10.1049/IET-CVI.2010.0183
E.A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373). pp. 0- 0 ,(2000) , 10.1109/ASSPCC.2000.882463
K. Xiong, H.Y. Zhang, C.W. Chan, Performance evaluation of UKF-based nonlinear filtering Automatica. ,vol. 42, pp. 261- 270 ,(2006) , 10.1016/J.AUTOMATICA.2005.10.004
Simon J. Julier, Jeffrey K. Uhlmann, New extension of the Kalman filter to nonlinear systems Signal processing, sensor fusion, and target recognition. Conference. ,vol. 3068, pp. 182- 193 ,(1997) , 10.1117/12.280797
Jun-Hou Wang, Jia-Bin Chen, Adaptive unscented Kalman filter for initial alignment of strapdown inertial navigation systems international conference on machine learning and cybernetics. ,vol. 3, pp. 1384- 1389 ,(2010) , 10.1109/ICMLC.2010.5580847
V. Kyrki, D. Kragic, H.I. Christensen, Measurement errors in visual servoing Robotics and Autonomous Systems. ,vol. 54, pp. 815- 827 ,(2006) , 10.1016/J.ROBOT.2006.05.002
Francois Chaumette, Seth Hutchinson, Visual servo control. I. Basic approaches IEEE Robotics & Automation Magazine. ,vol. 13, pp. 82- 90 ,(2006) , 10.1109/MRA.2006.250573
K. Reif, S. Gunther, E. Yaz, R. Unbehauen, Stochastic stability of the discrete-time extended Kalman filter IEEE Transactions on Automatic Control. ,vol. 44, pp. 714- 728 ,(1999) , 10.1109/9.754809
Azad Shademan, F. Janabi-Sharifi, Sensitivity analysis of EKF and iterated EKF pose estimation for position-based visual servoing international conference on control applications. pp. 755- 760 ,(2005) , 10.1109/CCA.2005.1507219
Youngrock Yoon, A. Kosaka, A.C. Kak, A New Kalman-Filter-Based Framework for Fast and Accurate Visual Tracking of Rigid Objects IEEE Transactions on Robotics. ,vol. 24, pp. 1238- 1251 ,(2008) , 10.1109/TRO.2008.2003281