Understanding the Kalman Filter

作者: Richard J. Meinhold , Nozer D. Singpurwalla

DOI: 10.1080/00031305.1983.10482723

关键词: Artificial intelligenceExtended Kalman filterMachine learningComputer scienceMultivariate normal distributionKalman filterEnsemble Kalman filterMultivariate statisticsBayesian inferenceExponential smoothingData miningSimple (abstract algebra)

摘要: Abstract This is an expository article. Here we show how the successfully used Kalman filter, popular with control engineers and other scientists, can be easily understood by statisticians if use a Bayesian formulation some well-known results in multivariate statistics. We also give simple example illustrating of filter for quality work.

参考文章(13)
O. L. Davies, Robert G. Brown, Statistical forecasting for inventory control Journal of the Royal Statistical Society: Series A (General). ,vol. 123, pp. 348- 349 ,(1960) , 10.2307/2342487
F. Schweppe, Evaluation of likelihood functions for Gaussian signals IEEE Transactions on Information Theory. ,vol. 11, pp. 61- 70 ,(1965) , 10.1109/TIT.1965.1053737
P. Kaminski, A. Bryson, S. Schmidt, Discrete square root filtering: A survey of current techniques IEEE Transactions on Automatic Control. ,vol. 16, pp. 727- 736 ,(1971) , 10.1109/TAC.1971.1099816
John F. Muth, Optimal Properties of Exponentially Weighted Forecasts Journal of the American Statistical Association. ,vol. 55, pp. 299- 306 ,(1960) , 10.1080/01621459.1960.10482064
R. E. Kalman, R. S. Bucy, New Results in Linear Filtering and Prediction Theory Journal of Basic Engineering. ,vol. 83, pp. 95- 108 ,(1961) , 10.1115/1.3658902
P. J. Harrison, C. F. Stevens, A Bayesian Approach to Short-term Forecasting Journal of the Operational Research Society. ,vol. 22, pp. 341- 362 ,(1971) , 10.1057/JORS.1971.78
Tamer Basar, A New Approach to Linear Filtering and Prediction Problems Journal of Basic Engineering. ,vol. 82, pp. 35- 45 ,(1960) , 10.1115/1.3662552
George Edward Pelham Box, Gwilym M. Jenkins, Time series analysis, forecasting and control ,(1970)