A Bound on the Real Stability Radius of Continuous-Time Linear Infinite-Dimensional Systems

作者: N. A. Bobylev , A. V. Bulatov

DOI: 10.1023/A:1012515015081

关键词: MathematicsMathematical analysisMarginal stabilityStability radiusDisturbance (geology)Dynamical systemControl theoryLinear dynamical system

摘要: The article examines bounds on disturbance norms under which a linear infinite-dimensional dynamical system remains stable.

参考文章(8)
Z. Lerman, Y. I. Neimark, ROBUST STABILITY OF LINEAR SYSTEMS Soviet physics. Doklady. ,vol. 36, pp. 506- 507 ,(1991)
B. Shafai, J. Chen, H.H. Niemann, J. Stoustrup, Stability radius optimization and loop transfer recovery for uncertain dynamic systems conference on decision and control. ,vol. 3, pp. 2985- 2987 ,(1994) , 10.1109/CDC.1994.411335
Henryk Minc, Marvin Marcus, A Survey of Matrix Theory and Matrix Inequalities ,(2010)
Viktor Nikolaevich Popov, Hyperstability of Control Systems ,(1973)
Li Qiu, B. Bernhardsson, A. Rantzer, E.J. Davison, P.M. Young, J.C. Doyle, A formula for computation of the real stability radius Automatica. ,vol. 31, pp. 879- 890 ,(1995) , 10.1016/0005-1098(95)00024-Q
Nguyen Khoa Son, On the real stability radius of positive linear discrete-time systems Numerical Functional Analysis and Optimization. ,vol. 16, pp. 1067- 1085 ,(1995) , 10.1080/01630569508816660
M.E. Sezer, D.D. Siljak, On stability of interval matrices IEEE Transactions on Automatic Control. ,vol. 39, pp. 368- 371 ,(1994) , 10.1109/9.272336
Walter Rudin, Functional Analysis ,(1973)