NUMERICAL EXPERIMENTS WITH ALGEBRAIC MULTILEVEL PRECONDITIONERS

作者: Erard Meurant

DOI:

关键词: Conjugate gradient methodPartial differential equationInterpolationLinear systemDiscretizationMathematicsDifferential algebraic geometryNumerical partial differential equationsAlgebraic numberAlgebra

摘要: This paper numerically compares different algebraic multilevel preconditioners to solve symmetric positive definite linear systems with the preconditioned conjugate gradient algorithm on a set of examples arising mainly from discretization second order partial differential equations. We compare several smoothers, influence matrices and interpolation schemes.

参考文章(8)
William L Briggs, A multigrid tutorial ,(1987)
Wei-Pai Tang, Wing Lok Wan, None, Sparse Approximate Inverse Smoother for Multigrid SIAM Journal on Matrix Analysis and Applications. ,vol. 21, pp. 1236- 1252 ,(2000) , 10.1137/S0895479899339342
Gérard Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices SIAM Journal on Matrix Analysis and Applications. ,vol. 13, pp. 707- 728 ,(1992) , 10.1137/0613045
Michele Benzi, Carl D. Meyer, Miroslav Tůma, A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method SIAM Journal on Scientific Computing. ,vol. 17, pp. 1135- 1149 ,(1996) , 10.1137/S1064827594271421
Gérard Meurant, A Multilevel AINV Preconditioner Numerical Algorithms. ,vol. 29, pp. 107- 129 ,(2002) , 10.1023/A:1014816109110
J. W. Ruge, K. Stüben, 4. Algebraic Multigrid Multigrid Methods. pp. 73- 130 ,(1987) , 10.1137/1.9781611971057.CH4