Free Boundary Problems for Surfaces of Constant Mean Curvature

作者: Michael Struwe

DOI: 10.1007/978-1-4612-4656-5_6

关键词: PhysicsMean curvatureFree boundary problemCurvatureConstant-mean-curvature surfaceMinimal surfaceMean curvature flowCenter of curvatureGeometryDifferential geometry

摘要: This survey describes a new existence result [21] for (disk-type) surfaces of prescribed constant mean curvature with free boundaries, and relates this to some other well-known variational problems arising in differential geometry.

参考文章(20)
Peter Tolksdorf, A parametric variational principle for minimal surfaces of varying topological type. Crelle's Journal. ,vol. 354, pp. 16- 49 ,(1984)
H. A. Schwarz, Gesammelte mathematische Abhandlungen Springer Berlin Heidelberg. ,(1890) , 10.1007/978-3-642-50665-9
Richard Courant (Mathematiker, Deutschland, USA), Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces ,(1950)
Haïm Brezis, Jean-Michel Coron, Multiple solutions ofH-systems and Rellich's conjecture Communications on Pure and Applied Mathematics. ,vol. 37, pp. 149- 187 ,(1984) , 10.1002/CPA.3160370202
Michael Struwe, Large H-Surfaces Via the Mountain-Pass-Lemma. Mathematische Annalen. ,vol. 270, pp. 441- 459 ,(1985) , 10.1007/BF01473439
R. S. Palais, S. Smale, A generalized Morse theory Bulletin of the American Mathematical Society. ,vol. 70, pp. 165- 172 ,(1964) , 10.1090/S0002-9904-1964-11062-4
Gerhard Dziuk, C2-Regularity for Partially Free Minimal Surfaces. Mathematische Zeitschrift. ,vol. 189, pp. 71- 79 ,(1985) , 10.1007/BF01246945
Johannes C. C. Nitsche, Stationary partitioning of convex bodies Archive for Rational Mechanics and Analysis. ,vol. 89, pp. 1- 19 ,(1985) , 10.1007/BF00281743
Umberto Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in R n Archive for Rational Mechanics and Analysis. ,vol. 55, pp. 357- 382 ,(1974) , 10.1007/BF00250439
Michael Struwe, The existence of surfaces of constant mean curvature with free boundaries Acta Mathematica. ,vol. 160, pp. 19- 64 ,(1988) , 10.1007/BF02392272