Image enhancement and restoration

作者: B. R. Frieden

DOI: 10.1007/3-540-09339-7_19

关键词: Type (model theory)ObservableListing (computer)Superposition principleData miningMixing (physics)PhenomenonPrinciple of maximum entropyPoint spread function

摘要: The aim of collecting data is to gain meaningful information about a phenomenon interest. Unfortunately, often the not direct physical observable. Instead, e.g., at hand may be linear superposition desired quantities. This linear, and simplest type mixing endemic in sciences, arising fields as diverse atmospheric physics medial diagnostics (see listing Section 5.1). common problem confronting workers these how “unmix” (or, restore, enhance, de-blur, de-convolve), data.

参考文章(46)
R. T. Lacoss, DATA ADAPTIVE SPECTRAL ANALYSIS METHODS Geophysics. ,vol. 36, pp. 661- 675 ,(1971) , 10.1190/1.1440203
A.A. Sawchuk, Space-variant image motion degradation and restoration Proceedings of the IEEE. ,vol. 60, pp. 854- 861 ,(1972) , 10.1109/PROC.1972.8784
T.G. Stockham, Image processing in the context of a visual model Proceedings of the IEEE. ,vol. 60, pp. 828- 842 ,(1972) , 10.1109/PROC.1972.8782
E. O'Neill, Spatial filtering in optics IEEE Transactions on Information Theory. ,vol. 2, pp. 56- 65 ,(1956) , 10.1109/TIT.1956.1056785
M.M. Sondhi, Image restoration: The removal of spatially invariant degradations Proceedings of the IEEE. ,vol. 60, pp. 842- 853 ,(1972) , 10.1109/PROC.1972.8783
Edward L. O'Neill, Introduction to Statistical Optics ,(1963)
James L. Harris, Image Evaluation and Restoration*† Journal of the Optical Society of America. ,vol. 56, pp. 569- 574 ,(1966) , 10.1364/JOSA.56.000569
William Hadley Richardson, Bayesian-Based Iterative Method of Image Restoration Journal of the Optical Society of America. ,vol. 62, pp. 55- 59 ,(1972) , 10.1364/JOSA.62.000055
P. H. van Cittert, Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II European Physical Journal. ,vol. 69, pp. 298- 308 ,(1930) , 10.1007/BF01391351