Axion dark matter, solitons and the cusp–core problem

作者: David J. E. Marsh , Ana-Roxana Pop

DOI: 10.1093/MNRAS/STV1050

关键词: Navarro–Frenk–White profileAxionParticle physicsDark matterCold dark matterScalar fieldPhysicsOrder (ring theory)SolitonDark matter halo

摘要: Self-gravitating bosonic fields can support stable and localised field configurations. For real fields, these solutions oscillate in time are known as oscillatons. The density profile is static, soliton. Such solitons should be ubiquitous models of axion dark matter, with the soliton characteristic mass size depending on some inverse power mass. Stable configurations non-relativistic axions studied numerically using Schr\"{o}dinger-Poisson system. This method, resulting profiles, reviewed. Using a scaling symmetry uncertainty principle, core related to central mass, $m_a$, universal way. Solitons have constant due pressure-support, unlike cuspy cold matter (CDM). One consequence this fact that composed ultra-light (ULAs) may resolve `cusp-core' problem CDM. In DM halos, thermodynamics will lead CDM-like Navarro-Frenk-White at large radii, small radii. Monte-Carlo techniques explore possible profiles form, fit stellar-kinematical data dwarf spheroidal galaxies performed. order for ULAs cusp-core (without recourse baryon feedback or other astrophysical effects) must satisfy $m_a<1.1\times 10^{-22}\text{ eV}$ 95\% C.L. On hand, $m_a\lesssim 1\times tension cosmological structure formation. An solution thus makes novel predictions future measurements epoch reionisation. seen evidence formation could soon impose \emph{Catch 22} axion/scalar DM, similar case warm DM.

参考文章(105)
Wayne Hu, Rennan Barkana, Andrei Gruzinov, Fuzzy cold dark matter: the wave properties of ultralight particles. Physical Review Letters. ,vol. 85, pp. 1158- 1161 ,(2000) , 10.1103/PHYSREVLETT.85.1158
F Siddhartha Guzman, L Arturo Urena-Lopez, None, Gravitational Cooling of Self-gravitating Bose Condensates The Astrophysical Journal. ,vol. 645, pp. 814- 819 ,(2006) , 10.1086/504508
F. Governato, J. Wadsley, A. M. Brooks, S. Shen, A. Pontzen, C. Christensen, A. Zolotov, T. Quinn, S. H. Oh, Cuspy No More: How Outflows Affect the Central Dark Matter and Baryon Distribution in Lambda CDM Galaxies arXiv: Cosmology and Nongalactic Astrophysics. ,(2012) , 10.1111/J.1365-2966.2012.20696.X
M. Hotz, D. B. Tanner, S. J. Asztalos, N. S. Sullivan, L. J Rosenberg, K. van Bibber, P. Sikivie, C. Martin, G. Carosi, J. Hwang, D. Kinion, J. Hoskins, R. Bradley, J. Clarke, A. Wagner, G. Rybka, C. Hagmann, Search for nonvirialized axionic dark matter Physical Review D. ,vol. 84, pp. 121302- ,(2011) , 10.1103/PHYSREVD.84.121302
James Binney, Scott Tremaine, Galactic Dynamics: Second Edition Galactic Dynamics: Second Edition. ,(2008) , 10.1515/9781400828722
M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. Jackson Kimball, W. Gawlik, D. Budker, Detecting domain walls of axionlike models using terrestrial experiments. Physical Review Letters. ,vol. 110, pp. 021803- ,(2013) , 10.1103/PHYSREVLETT.110.021803
Renée Hlozek, Daniel Grin, David J. E. Marsh, Pedro G. Ferreira, A search for ultralight axions using precision cosmological data Physical Review D. ,vol. 91, pp. 103512- ,(2015) , 10.1103/PHYSREVD.91.103512
M. Y. Khlopov, B. A. Malomed, Y. B. Zeldovich, Gravitational instability of scalar fields and formation of primordial black holes Monthly Notices of the Royal Astronomical Society. ,vol. 215, pp. 575- 589 ,(1985) , 10.1093/MNRAS/215.4.575
P. Fayet, C. Bœhm, R. Schaeffer, Constraining dark matter candidates from structure formation Physics Letters B. ,vol. 518, pp. 8- 14 ,(2001) , 10.1016/S0370-2693(01)01060-7