On the nonlinear behaviour of Boussinesq type models: Amplitude-velocity vs amplitude-flux forms

作者: A.G. Filippini , S. Bellec , M. Colin , M. Ricchiuto

DOI: 10.1016/J.COASTALENG.2015.02.003

关键词: MathematicsDispersion (water waves)Breaking waveWave shoalingMathematical analysisShoaling and schoolingDissipationType (model theory)Nonlinear systemClassical mechanicsAmplitude

摘要: In this paper we consider the modelling of nonlinear wave transformation by means weakly Boussinesq models. For a given couple linear dispersion relation-linear shoaling parameter, show how to derive two systems PDEs differing in form dispersive operators. particular, within same asymptotic accuracy, these operators can either be formulated derivatives velocity, or terms flux. first case speak amplitude-velocity model, second amplitude-flux form. We examples couples for several relations, including new variant model Nwogu (J. Waterway, Port, Coast. Ocean Eng. 119, 1993). then show, both analytically and numerical tests, that while small amplitude waves accuracy relations is fundamental, when approaching breaking conditions it only equations which determines behaviour particular shape height waves. regime thus find types behaviours, whatever relation coefficient. This knowledge has tremendous importance considering use models conjunction with some detection dissipation mechanism.

参考文章(39)
P. Bacigaluppi, M. Ricchiuto, P. Bonneton, A 1D Stabilized Finite Element Model for Non-hydrostatic Wave Breaking and Run-up FVCA7. ,vol. 77, pp. 779- 790 ,(2014) , 10.1007/978-3-319-05591-6_78
Μαρία Καζολέα, Maria Kazolea, Mathematical and computational modeling for the generation and propagation of waves in marine and coastal environments Πολυτεχνείο Κρήτης. Σχολή Μηχανικών Περιβάλλοντος. ,(2013)
Alfatih Ali, Henrik Kalisch, Mechanical Balance Laws for Boussinesq Models of Surface Water Waves Journal of Nonlinear Science. ,vol. 22, pp. 371- 398 ,(2012) , 10.1007/S00332-011-9121-2
P.A.A. Laura, R.H. Gutierrez, R.E. Rossi, Free vibrations of beams of bilinearly varying thickness Ocean Engineering. ,vol. 23, pp. 1- 6 ,(1996) , 10.1016/0029-8018(95)00029-K
D. H. Peregrine, Long waves on a beach Journal of Fluid Mechanics. ,vol. 27, pp. 815- 827 ,(1967) , 10.1017/S0022112067002605
Maojun Li, Philippe Guyenne, Fengyan Li, Liwei Xu, High order well-balanced CDG-FE methods for shallow water waves by a Green-Naghdi model Journal of Computational Physics. ,vol. 257, pp. 169- 192 ,(2014) , 10.1016/J.JCP.2013.09.050
Okey Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation Journal of Waterway Port Coastal and Ocean Engineering-asce. ,vol. 119, pp. 618- 638 ,(1993) , 10.1061/(ASCE)0733-950X(1993)119:6(618)
S. Beji, J.A. Battjes, Numerical simulation of nonlinear wave propagation over a bar Coastal Engineering. ,vol. 23, pp. 1- 16 ,(1994) , 10.1016/0378-3839(94)90012-4
M. Kazolea, A.I. Delis, C.E. Synolakis, Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations Journal of Computational Physics. ,vol. 271, pp. 281- 305 ,(2014) , 10.1016/J.JCP.2014.01.030
Ge Wei, James T. Kirby, Time-Dependent Numerical Code for Extended Boussinesq Equations Journal of Waterway Port Coastal and Ocean Engineering-asce. ,vol. 121, pp. 251- 261 ,(1995) , 10.1061/(ASCE)0733-950X(1995)121:5(251)