Dependence properties and Bayesian inference for asymmetric multivariate copulas

作者: Julyan Arbel , Marta Crispino , Stéphane Girard

DOI: 10.1016/J.JMVA.2019.06.008

关键词: InferenceMathematicsApplied mathematicsApproximate Bayesian computationRepresentation (mathematics)Class (set theory)Bayesian inferenceConstraint (information theory)Stability (probability)Tail dependence

摘要: We study a broad class of asymmetric copulas introduced by Liebscher (2008) as combination multiple – usually symmetric copulas. The main thrust the paper is to provide new theoretical properties including exact tail dependence expressions and stability properties. A subclass obtained combining comonotonic studied in more detail.We establish further for this show that they are characterized an arbitrary number singular components. Furthermore, we introduce novel iterative representation general which de facto insures uniform margins, thus relaxing constraint Liebscher’s original construction. Besides, construction proves useful inference developing Approximate Bayesian computation sampling scheme. This inferential procedure demonstrated on simulated data compared likelihood-based approach setting where latter available.

参考文章(41)
Gildas Mazo, Stéphane Girard, Florence Forbes, A class of multivariate copulas based on products of bivariate copulas Journal of Multivariate Analysis. ,vol. 140, pp. 363- 376 ,(2015) , 10.1016/J.JMVA.2015.06.001
Fabrizio Durante, Stéphane Girard, Gildas Mazo, Copulas Based on Marshall–Olkin Machinery Springer, Cham. ,vol. 141, pp. 15- 31 ,(2015) , 10.1007/978-3-319-19039-6_2
G. Salvadori, C. De Michele, Multivariate multiparameter extreme value models and return periods: A copula approach Water Resources Research. ,vol. 46, ,(2010) , 10.1029/2009WR009040
G. Schumann, G. Di Baldassarre, D. Alsdorf, P. D. Bates, Near real-time flood wave approximation on large rivers from space: Application to the River Po, Italy Water Resources Research. ,vol. 46, pp. 1- 8 ,(2010) , 10.1029/2008WR007672
José Antonio Rodrıguez-Lallena, Manuel Úbeda-Flores, A new class of bivariate copulas Statistics & Probability Letters. ,vol. 66, pp. 315- 325 ,(2004) , 10.1016/J.SPL.2003.09.010
Jun Yan, Enjoy the Joy of Copulas: With a Package copula Journal of Statistical Software. ,vol. 21, pp. 1- 21 ,(2007) , 10.18637/JSS.V021.I04
J. Li, D.J. Nott, Y. Fan, S.A. Sisson, Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model Computational Statistics & Data Analysis. ,vol. 106, pp. 77- 89 ,(2017) , 10.1016/J.CSDA.2016.07.005
Christian Genest, Kilani Ghoudi, Louis-Paul Rivest, None, “Understanding Relationships Using Copulas,” by Edward Frees and Emiliano Valdez, January 1998 The North American Actuarial Journal. ,vol. 2, pp. 143- 149 ,(1998) , 10.1080/10920277.1998.10595749
Fabrizio Durante, Construction of non-exchangeable bivariate distribution functions Statistical Papers. ,vol. 50, pp. 383- 391 ,(2009) , 10.1007/S00362-007-0064-5