作者: Chunrong Lai , Jielin Pan , Qingwei Zhao
DOI:
关键词: Probabilistic logic 、 Set (abstract data type) 、 Computer science 、 Language model 、 Vocabulary 、 Centroid 、 Class (philosophy) 、 Pattern recognition 、 Cluster analysis 、 Artificial intelligence 、 Speech recognition 、 Process (computing)
摘要: According to one aspect of the invention, a method is provided in which set probabilistic attributes an N-gram language model classified into plurality classes. Each resultant class clustered segments build code-book for respective using modified K-means clustering process dynamically adjusts size and centroid each segment during iteration process. A attribute then represented by corresponding belongs.