Review of sparse methods in regression and classification with application to chemometrics

作者: Peter Filzmoser , Moritz Gschwandtner , Valentin Todorov

DOI: 10.1002/CEM.1418

关键词: Clustering high-dimensional dataRegression analysisArtificial intelligencePartial least squares regressionPrincipal component analysisPattern recognitionRegressionRegression diagnosticMachine learningComputer scienceChemometricsLinear discriminant analysis

摘要: … Right: experimental values y i versus the fitted values urn:x-wiley:08869383:media:cem1418:cem1418-math-0058 for the final sparse partial least squares (SPLS) model. The set of …

参考文章(29)
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
Richard G. Brereton, Applied Chemometrics for Scientists ,(2007)
Daniela M. Witten, Robert Tibshirani, Penalized classification using Fisher's linear discriminant Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 73, pp. 753- 772 ,(2011) , 10.1111/J.1467-9868.2011.00783.X
Kim-Anh Lê Cao, Debra Rossouw, Christèle Robert-Granié, Philippe Besse, A Sparse PLS for Variable Selection when Integrating Omics Data Statistical Applications in Genetics and Molecular Biology. ,vol. 7, pp. 35- ,(2008) , 10.2202/1544-6115.1390
K. Vanden Branden, M. Hubert, Robust classification in high dimensions based on the SIMCA Method Chemometrics and Intelligent Laboratory Systems. ,vol. 79, pp. 10- 21 ,(2005) , 10.1016/J.CHEMOLAB.2005.03.002
Hui Zou, Trevor Hastie, Robert Tibshirani, Sparse Principal Component Analysis Journal of Computational and Graphical Statistics. ,vol. 15, pp. 265- 286 ,(2006) , 10.1198/106186006X113430
Sijmen de Jong, SIMPLS: an alternative approach to partial least squares regression Chemometrics and Intelligent Laboratory Systems. ,vol. 18, pp. 251- 263 ,(1993) , 10.1016/0169-7439(93)85002-X
Dongjun Chung, Sunduz Keles, Sparse Partial Least Squares Classification for High Dimensional Data Statistical Applications in Genetics and Molecular Biology. ,vol. 9, pp. 1- 32 ,(2010) , 10.2202/1544-6115.1492