Magnetic properties of pure and diamagnetically doped jarosites: Modelkagoméantiferromagnets with variable coverage of the magnetic lattice

作者: A. S. Wills , A. Harrison , C. Ritter , R. I. Smith

DOI: 10.1103/PHYSREVB.61.6156

关键词: AntiferromagnetismHexagonal latticeCondensed matter physicsCrystallographyCrystal structurePhysicsNeutron diffractionSpin structureMagnetic susceptibilitySpin glassOrder (ring theory)

摘要: Jarosites are a family of minerals general formula ${\mathrm{AFe}}_{3}{(\mathrm{OH})}_{6}{(\mathrm{S}\mathrm{O}}_{4}{)}_{2}$ (where ${A}^{+}$ is typically univalent cation such as ${\mathrm{Na}}^{+},$ ${\mathrm{K}}^{+},$ ${\mathrm{Rb}}^{+},$ ${\mathrm{ND}}_{4}^{+},$ ${\mathrm{Ag}}^{+},$ ${\mathrm{Tl}}^{+},$ or ${\mathrm{D}}_{3}{\mathrm{O}}^{+}).$ They provide good model Heisenberg kagom\'e antiferromagnets with which to test suggestions that highly frustrated have unconventional magnetic ground states and excitations. In all cases ${\mathrm{Fe}}^{3+}$ ions $S=\frac{5}{2}$ moments, arranged on the vertices well-separated layers, coupled through strong antiferromagnetic exchange values Weiss constants \ensuremath{\theta} order -700 K. We report dc susceptibility $({\ensuremath{\chi}}_{\mathrm{dc}})$ powder neutron diffraction studies materials in ${A}^{+}={\mathrm{Na}}^{+},$ ${\mathrm{D}}_{3}{\mathrm{O}}^{+}$ show for except deuteronium ${(A}^{+}={\mathrm{D}}_{3}{\mathrm{O}}^{+})$ salt, long-range in-plane $q=0$ spin structure sets below temperature ${T}_{f}$ 50 $({\mathrm{D}}_{3}{\mathrm{O})\mathrm{F}\mathrm{e}}_{3}{(\mathrm{S}\mathrm{O}}_{4}{)}_{2}{(\mathrm{OD})}_{6}$ shows only spin-glass-like transition at ${T}_{f}\ensuremath{\cong}15\mathrm{K}.$ There no obvious difference structures salts order, salt coverage lattice, higher $(97\ifmmode\pm\else\textpm\fi{}3%)$ latter than rest (\ensuremath{\leqslant}95%, most \ensuremath{\cong} 90%). It proposed reduction lattice induces jarosites, material $({\mathrm{D}}_{3}{\mathrm{O})\mathrm{F}\mathrm{e}}_{3\ensuremath{-}x}{\mathrm{Al}}_{y}{(\mathrm{OD})}_{6}{(\mathrm{S}\mathrm{O}}_{4}{)}_{2},$ $89\ifmmode\pm\else\textpm\fi{}3%$ has been prepared characterized this hypothesis. ${\ensuremath{\chi}}_{\mathrm{dc}}$ cusp 25.5 K, reveals 1.4 K same ordering vector seen other materials.

参考文章(55)
John Bannister Goodenough, Magnetism and the chemical bond ,(1963)
A P Ramirez, Strongly Geometrically Frustrated Magnets Annual Review of Materials Science. ,vol. 24, pp. 453- 480 ,(1994) , 10.1146/ANNUREV.MS.24.080194.002321
M F Collins, O A Petrenko, Review/Synthèse: Triangular antiferromagnets Canadian Journal of Physics. ,vol. 75, pp. 605- 655 ,(1997) , 10.1139/P97-007
Hikaru Kawamura, Critical properties of helical magnets and triangular antiferromagnets Journal of Applied Physics. ,vol. 63, pp. 3086- 3088 ,(1988) , 10.1063/1.340905
Rajiv R. P. Singh, David A. Huse, Three-sublattice order in triangular- and Kagomé-lattice spin-half antiferromagnets. Physical Review Letters. ,vol. 68, pp. 1766- 1769 ,(1992) , 10.1103/PHYSREVLETT.68.1766
Kun Yang, L. K. Warman, S. M. Girvin, Possible spin-liquid states on the triangular and kagomé lattices. Physical Review Letters. ,vol. 70, pp. 2641- 2644 ,(1993) , 10.1103/PHYSREVLETT.70.2641
E. F. Shender, V. B. Cherepanov, P. C. W. Holdsworth, A. J. Berlinsky, Kagomé antiferromagnet with defects: Satisfaction, frustration, and spin folding in a random spin system. Physical Review Letters. ,vol. 70, pp. 3812- 3815 ,(1993) , 10.1103/PHYSREVLETT.70.3812
Chen Zeng, Veit Elser, Numerical studies of antiferromagnetism on a Kagomé net. Physical Review B. ,vol. 42, pp. 8436- 8444 ,(1990) , 10.1103/PHYSREVB.42.8436
A. B. Harris, C. Kallin, A. J. Berlinsky, Possible Néel orderings of the Kagomé antiferromagnet. Physical Review B. ,vol. 45, pp. 2899- 2919 ,(1992) , 10.1103/PHYSREVB.45.2899
J. T. Chalker, P. C. W. Holdsworth, E. F. Shender, Hidden order in a frustrated system: Properties of the Heisenberg Kagomé antiferromagnet. Physical Review Letters. ,vol. 68, pp. 855- 858 ,(1992) , 10.1103/PHYSREVLETT.68.855