Conditional Lie-Bäcklund Symmetries and Invariant Subspaces to Nonlinear Diffusion Equations with Convection and Source: Conditional Lie-Bäcklund Symmetries and Invariant Subspaces

作者: Lina Ji , Changzheng Qu

DOI: 10.1111/SAPM.12010

关键词: Separable spacePure mathematicsInvariant subspaceMathematicsMathematical analysisConvectionCanonical formLinear subspaceInvariant (mathematics)Homogeneous spaceDynamical systems theory

摘要: The conditional Lie–Backlund symmetry method is used to study the invariant subspace of nonlinear diffusion equations with convection and source terms. We obtain a complete list canonical forms for such which admit higher order symmetries multidimensional subspaces. functionally generalized separable solutions resulting are constructed due corresponding reductions. For most cases, they reduced solving finite-dimensional dynamical systems.

参考文章(52)
V. A. Baikov, R. K. Gazizov, N. H. Ibragimov, V. F. Kovalev, Water Redistribution in Irrigated Soil Profiles: Invariant Solutions of the Governing Equation Nonlinear Dynamics. ,vol. 13, pp. 395- 409 ,(1997) , 10.1023/A:1008209125329
R. Z. Zhdanov, Higher Conditional Symmetry and Reduction of Initial Value Problems Nonlinear Dynamics. ,vol. 28, pp. 17- 27 ,(2002) , 10.1023/A:1014962601569
L. Ji, C. Qu, Conditional Lie–Bäcklund symmetries and invariant subspaces to non-linear diffusion equations Ima Journal of Applied Mathematics. ,vol. 76, pp. 610- 632 ,(2011) , 10.1093/IMAMAT/HXQ069
J.R. King, Exact polynomial solutions to some nonlinear diffusion equations Physica D: Nonlinear Phenomena. ,vol. 64, pp. 35- 65 ,(1993) , 10.1016/0167-2789(93)90248-Y
N. H. Ibragimov, S. R. Svirshchevskii, Lie–Bäcklund Symmetries of Submaximal Order of Ordinary Differential Equations Nonlinear Dynamics. ,vol. 28, pp. 155- 166 ,(2002) , 10.1023/A:1015065206364
Victor A. Galaktionov, Quasilinear heat equations with first-order sign-invariants and new explicit solutions Nonlinear Analysis-theory Methods & Applications. ,vol. 23, pp. 1595- 1621 ,(1994) , 10.1016/0362-546X(94)90208-9
D. J. ARRIGO, J. M. HILL, P. BROADBRIDGE, Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source Ima Journal of Applied Mathematics. ,vol. 52, pp. 1- 24 ,(1994) , 10.1093/IMAMAT/52.1.1
Roman O Popovych, Nataliya M Ivanova, New results on group classification of nonlinear diffusion–convection equations Journal of Physics A. ,vol. 37, pp. 7547- 7565 ,(2004) , 10.1088/0305-4470/37/30/011