PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples

作者: Philip M. Long , Lei Tan

DOI: 10.1145/238061.238105

关键词: Product distributionDiscrete mathematicsRectangleCombinatoricsMathematicsProduct (mathematics)

摘要: We describe a polynomial-time algorithm for learning axis-aligned rectangles in Q^d with respect to product distributions from multiple-instance examples the PAC model. Here, each example consists of n elements together label indicating whether any points is rectangle be learned. assume that there an unknown distribution D over such all instances are independently drawn according D. The accuracy hypothesis measured by probability it would incorrectly predict one more was Our achieves e 1-δ O\left(\frac{d^5n^{12}}{\epsilon^{20}} \log^2 \frac{nd}{\epsilon\delta}\right) time.

参考文章(11)
P.M. Long, M.K. Warmuth, Composite geometric concepts and polynomial predictability Information & Computation. ,vol. 113, pp. 230- 252 ,(1994) , 10.1006/INCO.1994.1071
A. Ehrenfeucht, Leslie Valiant, David Haussler, Michael Kearns, A general lower bound on the number of examples needed for learning conference on learning theory. pp. 139- 154 ,(1988) , 10.5555/93025.93068
L. G. Valiant, A theory of the learnable symposium on the theory of computing. ,vol. 27, pp. 1134- 1142 ,(1984) , 10.1145/800057.808710
Andrzej Ehrenfeucht, David Haussler, Michael Kearns, Leslie Valiant, A general lower bound on the number of examples needed for learning Information & Computation. ,vol. 82, pp. 247- 261 ,(1989) , 10.1016/0890-5401(89)90002-3
Peter Auer, Philip M. Long, Aravind Srinivasan, Approximating hyper-rectangles: learning and pseudo-random sets symposium on the theory of computing. pp. 314- 323 ,(1997) , 10.1145/258533.258611
Kenji Yamanishi, A learning criterion for stochastic rules conference on learning theory. ,vol. 9, pp. 165- 203 ,(1990) , 10.5555/92571.92590
Thomas G. Dietterich, Richard H. Lathrop, Tomás Lozano-Pérez, Solving the multiple instance problem with axis-parallel rectangles Artificial Intelligence. ,vol. 89, pp. 31- 71 ,(1997) , 10.1016/S0004-3702(96)00034-3
Leonard Pitt, Leslie G. Valiant, Computational limitations on learning from examples Journal of the ACM. ,vol. 35, pp. 965- 984 ,(1988) , 10.1145/48014.63140
Anselm Blumer, A. Ehrenfeucht, David Haussler, Manfred K. Warmuth, Learnability and the Vapnik-Chervonenkis dimension Journal of the ACM. ,vol. 36, pp. 929- 965 ,(1989) , 10.1145/76359.76371