Propagation and Separation of Charged Colloids by Cylindrical Passivated Gel Electrophoresis

作者: Dimitri Bikos , Thomas G. Mason

DOI: 10.1021/ACS.JPCB.6B02165

关键词: Electric fieldAgaroseCharged particleDispersityColloidMaterials scienceRadiusCartesian coordinate systemOpticsElectrophoresisMolecular physics

摘要: We explore the electrophoretic propagation of charged colloidal objects, monodisperse anionically stabilized polystyrene spheres, in large-pore agarose gels that have been passivated using polyethylene glycol (PEG) when a radial electric field is applied cylindrical geometry. By contrast to standard Cartesian gel-electrophoresis geometries, geometry, particles start at ring well near central axis propagate outward more rapidly initially and then slow down as they move further away from axis. building full-ring gel electrophoresis chamber taking movies scattered light propagating nanospheres undergoing electrophoresis, we experimentally demonstrate ring-like front propagates stably PEG-passivated measured radius function time agrees with simple model incorporates Moreover, show this geometry offers potential advantage performing separations objects widely different sizes: smaller can still be retained has limited size over long run times required for separating larger objects.

参考文章(22)
M Zweig, S Barban, N P Salzman, Analysis of simian virus 40 wild-type and mutant virions by agarose gel electrophoresis. Journal of Virology. ,vol. 17, pp. 916- 923 ,(1976) , 10.1128/JVI.17.3.916-923.1976
Carina Hasenoehrl, Colleen M. Alexander, Nicholas N. Azzarelli, James C. Dabrowiak, Enhanced detection of gold nanoparticles in agarose gel electrophoresis Electrophoresis. ,vol. 33, pp. 1251- 1254 ,(2012) , 10.1002/ELPS.201100556
S. Nhek, B. Tessema, U.G. Indahl, H. Martens, E.F. Mosleth, 2D electrophoresis image segmentation within a pixel-based framework Chemometrics and Intelligent Laboratory Systems. ,vol. 141, pp. 33- 46 ,(2015) , 10.1016/J.CHEMOLAB.2014.11.001
Xiaoming Zhu, Thomas G. Mason, Nanoparticle size distributions measured by optical adaptive-deconvolution passivated-gel electrophoresis. joint international conference on information sciences. ,vol. 435, pp. 67- 74 ,(2014) , 10.1016/J.JCIS.2014.08.016
Philip Serwer, Saeed A. Khan, Gary A. Griess, Non-denaturing gel electrophoresis of biological nanoparticles: viruses Journal of Chromatography A. ,vol. 698, pp. 251- 261 ,(1995) , 10.1016/0021-9673(94)01259-H
Matthias Hanauer, Sebastien Pierrat, Inga Zins, Alexander Lotz, Carsten Sönnichsen, Separation of Nanoparticles by Gel Electrophoresis According to Size and Shape Nano Letters. ,vol. 7, pp. 2881- 2885 ,(2007) , 10.1021/NL071615Y
Sara Mesgari, Ashok Kumar Sundramoorthy, Leslie S. Loo, Mary B. Chan-Park, Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes Faraday Discuss.. ,vol. 173, pp. 351- 363 ,(2014) , 10.1039/C4FD00092G
Fei Li, Reghan J. Hill, Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels. joint international conference on information sciences. ,vol. 394, pp. 1- 12 ,(2013) , 10.1016/J.JCIS.2012.10.022
Nekane Guarrotxena, Gary Braun, Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis Journal of Nanoparticle Research. ,vol. 14, pp. 1199- ,(2012) , 10.1007/S11051-012-1199-4
G.A. Griess, K.B. Guiseley, P. Serwer, The relationship of agarose gel structure to the sieving of spheres during agarose gel electrophoresis Biophysical Journal. ,vol. 65, pp. 138- 148 ,(1993) , 10.1016/S0006-3495(93)81072-5