Sinc-Approximations of Fractional Operators: A Computing Approach

作者: Gerd Baumann , Frank Stenger

DOI: 10.3390/MATH3020444

关键词: Representation (mathematics)Applied mathematicsIntegral equationConvolutionMathematical analysisSinc functionInverse Laplace transformSpin-½Fractional calculusMathematicsComputation

摘要: We discuss a new approach to represent fractional operators by Sinc approximation using convolution integrals. A spin off of the representation is an effective inverse Laplace transform. Several examples demonstrate application method different practical problems.

参考文章(48)
Yang Wang, Tom T. Hartley, Carl F. Lorenzo, Jay L. Adams, Joan E. Carletta, Robert J. Veillette, Modeling Ultracapacitors as Fractional-Order Systems New Trends in Nanotechnology and Fractional Calculus Applications. pp. 257- 262 ,(2010) , 10.1007/978-90-481-3293-5_21
Om Prakash Agrawal, Pankaj Kumar, Comparison of Five Numerical Schemes for Fractional Differential Equations Springer, Dordrecht. pp. 43- 60 ,(2007) , 10.1007/978-1-4020-6042-7_4
O. P. Agrawal, J. A. Tenreiro Machado, J. Sabatier, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering Springer. pp. 552- ,(2007)
W. G. Spohn, On the lattice constant for \vert³+³+³\vert≦1 Mathematics of Computation. ,vol. 23, pp. 141- 149 ,(1969) , 10.1090/S0025-5718-1969-0241366-6
Marek A. Kowalski, Krzystof A. Sikorski, Frank Stenger, Selected topics in approximation and computation Oxford University Press. ,(1995) , 10.1093/OSO/9780195080599.001.0001
Kai Diethelm, Neville J. Ford, NUMERICAL SOLUTION OF THE BAGLEY-TORVIK EQUATION ∗ Bit Numerical Mathematics. ,vol. 42, pp. 490- 507 ,(2002) , 10.1023/A:1021973025166
Hari M Srivastava, Anatoly A Kilbas, Juan J Trujillo, Theory and Applications of Fractional Differential Equations ,(2006)