Unsupervised Learning of Curved Manifolds

作者: Vin de Silva , Joshua B. Tenenbaum

DOI: 10.1007/978-0-387-21579-2_31

关键词: IsomapUnsupervised learningNonlinear dimensionality reductionRegular polygonMathematicsPattern recognitionData setClass (set theory)Conformal mapArtificial intelligenceRange (mathematics)

摘要: We describe a variant of the Isomap manifold learning algorithm [1], called ‘C-Isomap’. was designed to learn non-linear mappings which are isometric embeddings flat, convex data set. C-Isomap is recover in larger class conformal embeddings, provided that original sampling density reasonably uniform. compare performance both versions and other algorithms for (MDS, LLE, GTM) on range sets.

参考文章(5)
Joshua B Tenenbaum, Vin de Silva, John C Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction Science. ,vol. 290, pp. 2319- 2323 ,(2000) , 10.1126/SCIENCE.290.5500.2319
Aapo Hyvärinen, Petteri Pajunen, Nonlinear independent component analysis: existence and uniqueness results Neural Networks. ,vol. 12, pp. 429- 439 ,(1999) , 10.1016/S0893-6080(98)00140-3
Sam T Roweis, Lawrence K Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding Science. ,vol. 290, pp. 2323- 2326 ,(2000) , 10.1126/SCIENCE.290.5500.2323
D. Beymer, T. Poggio, Image representations for visual learning. Science. ,vol. 272, pp. 1905- 1909 ,(1996) , 10.1126/SCIENCE.272.5270.1905
Christopher M. Bishop, Markus Svensén, Christopher K. I. Williams, GTM: the generative topographic mapping Neural Computation. ,vol. 10, pp. 215- 234 ,(1998) , 10.1162/089976698300017953