REKINDLE : Robust Extraction of Kurtosis INDices with Linear Estimation

作者: Chantal M.W. Tax , Willem M. Otte , Max A. Viergever , Rick M. Dijkhuizen , Alexander Leemans

DOI: 10.1002/MRM.25165

关键词: Speech recognitionLinear least squaresDiffusion MRIDiffusion Kurtosis ImagingKurtosisOutlierDiffusion (business)AlgorithmComputer scienceComputationReduction (complexity)

摘要: Purpose: Recent literature shows that diffusion tensor properties can be estimated more accurately with kurtosis imaging (DKI) than (DTI). Furthermore, the additional non-Gaussian features from DKI sensitive markers for tissue characterization. Despite these benefits, is susceptible to data artifacts DTI due its increased model complexity, higher acquisition demands, and longer scanning times. To increase reliability of estimates, we propose a robust estimation procedure DKI. Methods: We have developed linear framework, coined REKINDLE (Robust Extraction Kurtosis INDices Linear Estimation), consisting an iteratively reweighted least squares approach. Simulations are performed, in which evaluated compared widely used RESTORE EStimation Tensors by Outlier REjection) method. Results: demonstrate presence outliers, estimate indices reliably 10-fold reduction computation time RESTORE. Conclusion: presented REKINDLE, framework While has been DKI, it design also applicable other models linearized.

参考文章(56)
Jelle Veraart, Jeny Rajan, Ronald R. Peeters, Alexander Leemans, Stefan Sunaert, Jan Sijbers, Comprehensive framework for accurate diffusion MRI parameter estimation Magnetic Resonance in Medicine. ,vol. 70, pp. 972- 984 ,(2013) , 10.1002/MRM.24529
José V. Manjón, Pierrick Coupé, Luis Martí-Bonmatí, D. Louis Collins, Montserrat Robles, Adaptive non‐local means denoising of MR images with spatially varying noise levels Journal of Magnetic Resonance Imaging. ,vol. 31, pp. 192- 203 ,(2010) , 10.1002/JMRI.22003
J.-F. Mangin, C. Poupon, C. Clark, D. Le Bihan, I. Bloch, Distortion correction and robust tensor estimation for MR diffusion imaging Medical Image Analysis. ,vol. 6, pp. 191- 198 ,(2002) , 10.1016/S1361-8415(02)00079-8
S. Hekimoglu, M. Berber, Effectiveness of robust methods in heterogeneous linear models Journal of Geodesy. ,vol. 76, pp. 706- 713 ,(2003) , 10.1007/S00190-002-0289-Y
P. J. Bickel, Using Residuals Robustly I: Tests for Heteroscedasticity, Nonlinearity Annals of Statistics. ,vol. 6, pp. 266- 291 ,(1978) , 10.1214/AOS/1176344124
Filip Szczepankiewicz, Jimmy Lätt, Ronnie Wirestam, Alexander Leemans, Pia Sundgren, Danielle van Westen, Freddy Ståhlberg, Markus Nilsson, Variability in diffusion kurtosis imaging: Impact on study design, statistical power and interpretation. NeuroImage. ,vol. 76, pp. 145- 154 ,(2013) , 10.1016/J.NEUROIMAGE.2013.02.078
Santiago Aja-Fernández, Antonio Tristán-Vega, Carlos Alberola-López, Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models Magnetic Resonance Imaging. ,vol. 27, pp. 1397- 1409 ,(2009) , 10.1016/J.MRI.2009.05.025
David Ruppert, Raymond J Carroll, David M Giltinan, Some new estimation methods for weighted regression where there are possible outliers Technometrics. ,vol. 28, pp. 219- 230 ,(1986) , 10.2307/1269077
J. Gooijers, A. Leemans, S. Van Cauter, S. Sunaert, S. P. Swinnen, K. Caeyenberghs, White matter organization in relation to upper limb motor control in healthy subjects: exploring the added value of diffusion kurtosis imaging Brain Structure & Function. ,vol. 219, pp. 1627- 1638 ,(2014) , 10.1007/S00429-013-0590-Y