Construction Demand Forecasting Based on Conventional and Supervised Machine Learning Methods

作者: Ali Ghanbari

DOI:

关键词: Computer scienceDemand forecastingMachine learningArtificial intelligence

摘要:

参考文章(7)
Kjell Johnson, Max Kuhn, Applied Predictive Modeling ,(2013)
Michael C. P. Sing, D. J. Edwards, Henry J. X. Liu, P. E. D. Love, Forecasting Private-Sector Construction Works: VAR Model Using Economic Indicators Journal of Construction Engineering and Management. ,vol. 141, pp. 04015037- 04015037 ,(2015) , 10.1061/(ASCE)CO.1943-7862.0001016
Xiaodong Li, Haoran Xie, Ran Wang, Yi Cai, Jingjing Cao, Feng Wang, Huaqing Min, Xiaotie Deng, Empirical analysis: stock market prediction via extreme learning machine Neural Computing and Applications. ,vol. 27, pp. 67- 78 ,(2016) , 10.1007/S00521-014-1550-Z
Manuel Herrera, Luís Torgo, Joaquín Izquierdo, Rafael Pérez-García, Predictive models for forecasting hourly urban water demand Journal of Hydrology. ,vol. 387, pp. 141- 150 ,(2010) , 10.1016/J.JHYDROL.2010.04.005
JACKIE CRISP, DIANNE PELLETIER, CHRISTINE DUFFIELD, ANNE ADAMS, SUE NAGY, The Delphi method Nursing Research. ,vol. 46, pp. 116- 118 ,(1997) , 10.1097/00006199-199703000-00010
Kumar Chandar Sivalingam, Sumathi Mahendran, Sivanandam Natarajan, Forecasting Gold Prices Based on Extreme Learning Machine International Journal of Computers Communications & Control. ,vol. 11, pp. 372- 380 ,(2016) , 10.15837/IJCCC.2016.3.2009