In vivo Tube Assay: An Optimised Protocol of the Directed in vivo Angiogenesis Assay by Implementing Immunohistochemistry.

作者: Matthias Unseld , Johannes M. Breuss , Clemens Pausz , Eleonore Pablik , Gernot Schabbauer

DOI: 10.1159/000434751

关键词: Biomedical engineeringEx vivoIn vivoAngiogenesisBiologyAngiogenesis Inducing AgentsFibroblast growth factorNeovascularizationPathologyCD31Vascular endothelial growth factor A

摘要: Background: Angiogenesis, the formation of new blood vessels, is an essential process under physiological and pathological conditions. Method: Here, we improved directed in vivo angiogenesis assay (DIVAA®) test, which based on usage small Matrigel-filled tubes that are implanted into mice subcutaneously for a period up to 15 days. The subsequent ex assessment neoangiogenesis within silicon then achieved by fluorometry. Results: We showed immunohistochemical quantification ingrowth endothelial cells, CD31, was superior fluorometric advised manufacturer's instructions. optimised explantation procedure, ensuring complete recovery ingrown vessels. Using this modified protocol, investigated effect length stay as well concentration growth factors VEGF FGF assay. Conclusion: Our protocol offered effective reliable alternative original assay, expected facilitate research and, thus, might drive development novel therapeutic agents.

参考文章(25)
Robert Auerbach, Nasim Akhtar, Rachel L Lewis, Brenda L Shinners, Angiogenesis assays: problems and pitfalls. Cancer and Metastasis Reviews. ,vol. 19, pp. 167- 172 ,(2000) , 10.1023/A:1026574416001
R. Pili, A. Passaniti, G. R. Martin, D. S. Grant, R. M. Taylor, P. V. Long, Y. Guo, R. R. Pauly, J. A. Haney, A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Laboratory Investigation. ,vol. 67, pp. 519- 528 ,(1992)
A Patz, G A Lutty, S Watt, G A Fournier, A Fenselau, A corneal micropocket assay for angiogenesis in the rat eye. Investigative Ophthalmology & Visual Science. ,vol. 21, pp. 351- 354 ,(1981)
S. P. Andrade, G. P. Lewis, T.-P. D. Fan, Quantitative in-vivo studies on angiogenesis in a rat sponge model. British journal of experimental pathology. ,vol. 68, pp. 755- 766 ,(1987)
Peter Carmeliet, Mechanisms of angiogenesis and arteriogenesis. Nature Medicine. ,vol. 6, pp. 389- 395 ,(2000) , 10.1038/74651
George N. Serbedzija, Zebrafish angiogenesis: a new model for drug screening. Angiogenesis. ,vol. 3, pp. 353- 359 ,(1999) , 10.1023/A:1026598300052
R J D'Amato, J Folkman, E Flynn, C C Chen, B M Kenyon, E E Voest, A model of angiogenesis in the mouse cornea. Investigative Ophthalmology & Visual Science. ,vol. 37, pp. 1625- 1632 ,(1996)
Michael A. Gimbrone, Ramzi S. Cotran, Stephen B. Leapman, Judah Folkman, Tumor Growth and Neovascularization: An Experimental Model Using the Rabbit Cornea Journal of the National Cancer Institute. ,vol. 52, pp. 413- 427 ,(1974) , 10.1093/JNCI/52.2.413
Marina Poettler, Matthias Unseld, Judit Mihaly-Bison, Pavel Uhrin, Florian Koban, Bernd R. Binder, Christoph C. Zielinski, Gerald W. Prager, The urokinase receptor (CD87) represents a central mediator of growth factor-induced endothelial cell migration Thrombosis and Haemostasis. ,vol. 108, pp. 357- 366 ,(2012) , 10.1160/TH11-12-0868
Hua Zhou, Ying-Hua Yang, Nada O. Binmadi, Patrizia Proia, John R. Basile, The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma. Experimental Cell Research. ,vol. 318, pp. 1685- 1698 ,(2012) , 10.1016/J.YEXCR.2012.04.019