Distributed Particle Filters for Object Tracking in Sensor Networks

作者: Garrick Ing

DOI:

关键词: Energy (signal processing)Particle filterVisual sensor networkObject (computer science)Video trackingFilter (video)Control theorySet (abstract data type)Real-time computingComputer scienceWireless sensor network

摘要: A particle filter (PF) is a simulation-based algorithm used to solve estimation problems, such as object tracking. The PF works by maintaining set of “particles” candidate state descriptions an object’s position. determines how well the particles describe observations and fit dynamic model, in order form estimate. drawback basic that functions collecting all data at fusion centre. This leads high communication energy costs resourcelimited network sensor network. In this thesis, we analyze determine it can be modified for efficient use Our main priority keep low since increases lifetime. We propose two innovative filtering algorithms which minimizes associated costs.

参考文章(60)
Richard J. Meinhold, Nozer D. Singpurwalla, Robustification of Kalman Filter Models Journal of the American Statistical Association. ,vol. 84, pp. 479- 486 ,(1989) , 10.1080/01621459.1989.10478794
F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, P.-J. Nordlund, Particle filters for positioning, navigation, and tracking IEEE Transactions on Signal Processing. ,vol. 50, pp. 425- 437 ,(2002) , 10.1109/78.978396
Andrew H. Jazwinski, Stochastic Processes and Filtering Theory ,(1970)
Juan Liu, James Reich, Feng Zhao, Collaborative In-Network Processing for Target Tracking EURASIP Journal on Advances in Signal Processing. ,vol. 2003, pp. 378- 391 ,(2003) , 10.1155/S111086570321204X
M. Bolic, P.M. Djuric, Sangjin Hong, Resampling algorithms and architectures for distributed particle filters IEEE Transactions on Signal Processing. ,vol. 53, pp. 2442- 2450 ,(2005) , 10.1109/TSP.2005.849185
I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks IEEE Communications Magazine. ,vol. 40, pp. 102- 114 ,(2002) , 10.1109/MCOM.2002.1024422
Markov Chain Monte Carlo in Practice Technometrics. ,vol. 39, pp. 338- 338 ,(1997) , 10.1201/B14835
Michael K. Pitt, Neil Shephard, Filtering via Simulation: Auxiliary Particle Filters Journal of the American Statistical Association. ,vol. 94, pp. 590- 599 ,(1999) , 10.1080/01621459.1999.10474153
F. Martinerie, Data fusion and tracking using HMMs in a distributed sensor network IEEE Transactions on Aerospace and Electronic Systems. ,vol. 33, pp. 11- 28 ,(1997) , 10.1109/7.570704
Leonidas Guibas, Sebastian Thrun, Nelson Lee, Jaewon Shin, Lazy inference on object identities in wireless sensor networks information processing in sensor networks. pp. 174- 180 ,(2005) , 10.5555/1147685.1147718