Application of SVM-Based Relevance Feedback in Image Retrieval

作者: Xian.Wei Wu , Wen.Yang Yu , Yu.Bin Yang

DOI: 10.2991/ASEI-15.2015.211

关键词: Artificial intelligenceVisual WordMachine learningOrder (business)Support vector machineFocus (computing)Computer scienceImage retrievalRelevance feedbackAutomatic image annotation

摘要: In the page, we discuss relevance feedback techniques in image retrieval system, and then focus on SVM-based feedback. Using feedback, precision rate of system is satisfied. order to better understand effectiveness some well-designed experiments are taken out.

参考文章(7)
Kyung Hoon Hwang, Haejun Lee, Duckjoo Choi, Medical image retrieval: past and present Healthcare Informatics Research. ,vol. 18, pp. 3- 9 ,(2012) , 10.4258/HIR.2012.18.1.3
Xiang Sean Zhou, Thomas S. Huang, Relevance feedback in image retrieval: A comprehensive review Multimedia Systems. ,vol. 8, pp. 536- 544 ,(2003) , 10.1007/S00530-002-0070-3
Caihong Ma, Qin Dai, Jianbo Liu, Shibin Liu, Jin Yang, An improved SVM model for relevance feedback in remote sensing image retrieval International Journal of Digital Earth. ,vol. 7, pp. 725- 745 ,(2014) , 10.1080/17538947.2013.781238
Ela Yildizer, Ali Metin Balci, Tamer N. Jarada, Reda Alhajj, Integrating wavelets with clustering and indexing for effective content-based image retrieval Knowledge Based Systems. ,vol. 31, pp. 55- 66 ,(2012) , 10.1016/J.KNOSYS.2012.01.013
Thomas Deselaers, Daniel Keysers, Hermann Ney, Features for image retrieval: an experimental comparison Information Retrieval. ,vol. 11, pp. 77- 107 ,(2008) , 10.1007/S10791-007-9039-3
Ritendra Datta, Dhiraj Joshi, Jia Li, James Z. Wang, Image retrieval ACM Computing Surveys. ,vol. 40, pp. 1- 60 ,(2008) , 10.1145/1348246.1348248
XueFeng Wang, XingSu Chen, Efficient image retrieval using support vector machines and Bayesian relevance feedback international congress on image and signal processing. pp. 786- 789 ,(2012) , 10.1109/CISP.2012.6469899