Approximate energy conservation of symplectic A-stable Runge--Kutta methods for Hamiltonian semilinear evolution equations

作者: Claudia Wulff , Marcel Oliver

DOI:

关键词: Periodic boundary conditionsNonlinear systemMathematicsWave equationAnalytic functionHamiltonian (quantum mechanics)Mathematical analysisRunge–Kutta methodsBounded functionSymplectic geometry

摘要: We prove that a class of A-stable symplectic Runge--Kutta time semidiscretizations (including the Gauss--Legendre methods) applied to semilinear Hamiltonian PDEs which are well-posed on spaces analytic functions with initial data conserve modified energy up an exponentially small error. This is O(h^p)-close original where p order method and h step-size. Examples such systems wave equation or nonlinear Schr\"odinger nonlinearity periodic boundary conditions. Standard backward error analysis does not apply here because occurrence unbounded operators in construction vector field. loss regularity can be taken care by projecting PDE subspace occurring evolution bounded coupling number excited modes as well terms expansion vectorfield stepsize. way we obtain exponential estimates form O(\exp(-\beta/h^{1/(1+q)})) \beta>0 q \geq 0; for equation, q=1, q=2.

参考文章(32)
Jerrold E. Marsden, Tudor S. Ratiu, Introduction to mechanics and symmetry Springer-Verlag. ,(1994) , 10.1007/978-0-387-21792-5
Ernst Hairer, Backward analysis of numerical integrators and symplectic methods Annals of Numerical Mathematics. ,vol. 1, pp. 107- 132 ,(1994)
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)
David Cohen, Ernst Hairer, Christian Lubich, Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations Numerische Mathematik. ,vol. 110, pp. 113- 143 ,(2008) , 10.1007/S00211-008-0163-9
Thomas J. Bridges, Sebastian Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Physics Letters A. ,vol. 284, pp. 184- 193 ,(2001) , 10.1016/S0375-9601(01)00294-8
Ludwig Gauckler, Christian Lubich, Splitting Integrators for Nonlinear Schrödinger Equations Over Long Times Foundations of Computational Mathematics. ,vol. 10, pp. 275- 302 ,(2010) , 10.1007/S10208-010-9063-3