Anomalies and the Atiyah-Singer Theorem

作者: Michio Kaku

DOI: 10.1007/978-1-4612-0543-2_8

关键词: GravitationSimple (abstract algebra)Curvature formFeynman diagramUnified field theoryDirac operatorGauge groupPure mathematicsMathematicsCoupling constant

摘要: Ideally, we would want a truly unified theory of all known interactions to satisfy at least two criteria: (1) It must be based on simple physical assumptions, expressed in terms new geometry, which will allow no more than one coupling constant. (2) It yield finite gravity coupled the minimal SU(3) ⊗ SU(2) U(1) model particle interactions.

参考文章(17)
J. S. Bell, R. Jackiw, A PCAC puzzle: π0→γγ in the σ-model Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields. ,vol. 60, pp. 47- 61 ,(1969) , 10.1007/BF02823296
A.R. Kessel, M.A. Korchemkin, The possible nature of some phase transitions in ferroelectrics and antiferroelectrics Physics Letters A. ,vol. 37, pp. 95- 96 ,(1971) , 10.1016/0375-9601(71)90074-0
D. Friedan, P. Windey, SUPERSYMMETRIC DERIVATION OF THE ATIYAH-SINGER INDEX AND THE CHIRAL ANOMALY Nuclear Physics. ,vol. 235, pp. 395- 416 ,(1984) , 10.1016/0550-3213(84)90506-6
Siddhartha Sen, Charles Nash, John Stachel, Topology and geometry for physicists ,(1983)
Luis Alvarez-Gaumé, Supersymmetry and the Atiyah-Singer Index Theorem Communications in Mathematical Physics. ,vol. 90, pp. 161- 173 ,(1983) , 10.1007/BF01205500
Michael B. Green, John H. Schwarz, Anomaly cancellations in supersymmetric D=10 gauge theory and superstring theory Physics Letters B. ,vol. 149, pp. 117- 122 ,(1984) , 10.1016/0370-2693(84)91565-X
Bruno Zumino, Yong-Shi Wu, Zee, A, Chiral anomalies, higher dimensions, and differential geometry Nuclear Physics. ,vol. 239, pp. 477- 507 ,(1984) , 10.1016/0550-3213(84)90259-1
J. Wess, B. Zumino, Consequences of anomalous ward identities Physics Letters B. ,vol. 37, pp. 95- 97 ,(1971) , 10.1016/0370-2693(71)90582-X
J.E. Paton, Chan Hong-Mo, Generalized Veneziano model with isospin Nuclear Physics B. ,vol. 10, pp. 516- 520 ,(1969) , 10.1016/0550-3213(69)90038-8