作者: Kazuyuki Hara , Daisuke Saito , Hayaru Shouno
DOI: 10.1109/IJCNN.2015.7280578
关键词: Active learning (machine learning) 、 Artificial neural network 、 Unsupervised learning 、 Semi-supervised learning 、 Competitive learning 、 Artificial intelligence 、 Machine learning 、 Computational learning theory 、 Deep belief network 、 Deep learning 、 Instance-based learning 、 Stability (learning theory) 、 Rectifier (neural networks) 、 Computer science 、 Wake-sleep algorithm 、 Online machine learning 、 Generalization error
摘要: … To avoid this difficulty, a rectified linear unit (ReLU) is proposed to speed up the learning convergence. However, the reasons the convergence is speeded up are not well understood. In …