Analysis of function of rectified linear unit used in deep learning

作者: Kazuyuki Hara , Daisuke Saito , Hayaru Shouno

DOI: 10.1109/IJCNN.2015.7280578

关键词: Active learning (machine learning)Artificial neural networkUnsupervised learningSemi-supervised learningCompetitive learningArtificial intelligenceMachine learningComputational learning theoryDeep belief networkDeep learningInstance-based learningStability (learning theory)Rectifier (neural networks)Computer scienceWake-sleep algorithmOnline machine learningGeneralization error

摘要: … To avoid this difficulty, a rectified linear unit (ReLU) is proposed to speed up the learning convergence. However, the reasons the convergence is speeded up are not well understood. In …

参考文章(10)
Kazuyuki Hara, Kentaro Katahira, Kazuo Okanoya, Masato Okada, Theoretical Analysis of Function of Derivative Term in On-Line Gradient Descent Learning Artificial Neural Networks and Machine Learning – ICANN 2012. pp. 9- 16 ,(2012) , 10.1007/978-3-642-33266-1_2
Shun-ichi Amari, Natural gradient works efficiently in learning Neural Computation. ,vol. 10, pp. 177- 202 ,(1998) , 10.1162/089976698300017746
David Saad, Sara A. Solla, On-line learning in soft committee machines Physical Review E. ,vol. 52, pp. 4225- 4243 ,(1995) , 10.1103/PHYSREVE.52.4225
M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q.V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, G.E. Hinton, On rectified linear units for speech processing international conference on acoustics, speech, and signal processing. pp. 3517- 3521 ,(2013) , 10.1109/ICASSP.2013.6638312
M Biehl, H Schwarze, Learning by on-line gradient descent Journal of Physics A. ,vol. 28, pp. 643- 656 ,(1995) , 10.1088/0305-4470/28/3/018
Kazuyuki Hara, Kentaro Katahira, Theoretical Analysis of Learning Speed in Gradient Descent Algorithm Replacing Derivative with Constant Ipsj Online Transactions. ,vol. 7, pp. 14- 19 ,(2014) , 10.2197/IPSJTRANS.7.14
Geoffrey E. Hinton, Simon Osindero, Yee-Whye Teh, A fast learning algorithm for deep belief nets Neural Computation. ,vol. 18, pp. 1527- 1554 ,(2006) , 10.1162/NECO.2006.18.7.1527
Yoshua Bengio, Xavier Glorot, Antoine Bordes, Deep Sparse Rectifier Neural Networks international conference on artificial intelligence and statistics. ,vol. 15, pp. 315- 323 ,(2011)