作者: Ian D. Longstaff , John F. Cross
DOI: 10.1016/0167-8655(87)90072-9
关键词: Backpropagation 、 Perceptron 、 Pattern recognition (psychology) 、 Artificial neural network 、 Pattern recognition 、 Computer science 、 Multilayer perceptron 、 Feature vector 、 Training set 、 Representation (mathematics) 、 Artificial intelligence 、 Neutral network
摘要: Abstract This letter is concerned with the operation of a class multi-layer associative networks commonly known as perceptron (MLP), Rumelharte network or back-propagation network. We describe MLP pattern recognition device in terms feature-space representation. allows an understanding how structure training data represented internally machine.