Artificial Neural Network enabled P2D Model Deployment for End-of-Line Battery Cell Characterization

作者: Artem Turetskyy , Vincent Laue , Raphael Lamprecht , Sebastian Thiede , Ulrike Krewer

DOI: 10.1109/INDIN41052.2019.8972181

关键词: Estimation theoryBattery (electricity)Characterization (materials science)Software deploymentLine (electrical engineering)Process (computing)Artificial neural networkBattery cellControl engineeringComputer science

摘要: The production chain of lithium-ion battery cells is an intricate process with manifold process-product interdependencies leading to a complex product, the cell. In order assess quality and performance cell in end-of-line characterization, models need be fit experimental data estimate unmeasured physical parameters This procedure laborious error prone model complexity large number therefore presently not suitable as end-of line test large-scale production. this paper, used generate by varying measured train artificial neural network for fast reliable diagnostics. presented capable fitting less than second make it more characterization.

参考文章(28)
Geoffrey E. Hinton, Vinod Nair, Rectified Linear Units Improve Restricted Boltzmann Machines international conference on machine learning. pp. 807- 814 ,(2010)
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification international conference on computer vision. pp. 1026- 1034 ,(2015) , 10.1109/ICCV.2015.123
P. M. Trivailo, T. Gilbert, E. Glessich, D. Sgarioto, Inverse problem of aircraft structural parameter identification: application of genetic algorithms compared with artificial neural networks Inverse Problems in Science and Engineering. ,vol. 14, pp. 337- 350 ,(2006) , 10.1080/17415970600573338
Marc Doyle, John Newman, The use of mathematical modeling in the design of lithium/polymer battery systems Electrochimica Acta. ,vol. 40, pp. 2191- 2196 ,(1995) , 10.1016/0013-4686(95)00162-8
Andrew M. Colclasure, Robert J. Kee, Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries Electrochimica Acta. ,vol. 55, pp. 8960- 8973 ,(2010) , 10.1016/J.ELECTACTA.2010.08.018
Ali Liaqat, Makoto Fukuhara, Tatsuoki Takeda, Optimal estimation of parameters of dynamical systems by neural network collocation method Computer Physics Communications. ,vol. 150, pp. 215- 234 ,(2003) , 10.1016/S0010-4655(02)00680-X
P. M. Trivailo, G. S. Dulikravich, D. Sgarioto, T. Gilbert, Inverse problem of aircraft structural parameter estimation: application of neural networks Inverse Problems in Science and Engineering. ,vol. 14, pp. 351- 363 ,(2006) , 10.1080/17415970600573411
Bharatkumar Suthar, Venkatasailanathan Ramadesigan, Paul W. C. Northrop, Bhushan Gopaluni, Shriram Santhanagopalan, Richard D. Braatz, Venkat R. Subramanian, Optimal control and state estimation of lithium-ion batteries using reformulated models american control conference. pp. 5350- 5355 ,(2013) , 10.1109/ACC.2013.6580673
Nathalie Legrand, Stéphane Raël, Bernard Knosp, Melika Hinaje, Philippe Desprez, François Lapicque, Including double-layer capacitance in lithium-ion battery mathematical models Journal of Power Sources. ,vol. 251, pp. 370- 378 ,(2014) , 10.1016/J.JPOWSOUR.2013.11.044