Quantitative treatment of decoherence

作者: Vladimir Privman , Leonid Fedichkin

DOI: 10.1007/978-3-540-79365-6_8

关键词: QubitDensity matrixQuantumQuantum decoherencePhysicsQuantum registerCharge qubitQuantum noiseQuantum mechanicsQuantum dissipation

摘要: We review several approaches to define and quantify decoherence. find that a measure based on norm of deviation the density matrix is appropriate for quantifying decoherence quantum registers. For semiconductor double quantum-dot charge qubit, evaluation this presented. general class processes, including those occurring in qubits, we establish additive: It scales linearly with number qubits register.

参考文章(115)
B. E. Kane, A silicon-based nuclear spin quantum computer Nature. ,vol. 393, pp. 133- 137 ,(1998) , 10.1038/30156
Alexander Shnirman, Gerd Schön, Dephasing and Renormalization in Quantum Two-Level Systems arXiv: Mesoscale and Nanoscale Physics. pp. 357- 370 ,(2003) , 10.1007/978-94-010-0089-5_17
Yu. A. Pashkin, Y. Nakamura, J. S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box Nature. ,vol. 398, pp. 786- 788 ,(1999) , 10.1038/19718
N. Nisan, R. Impagliazzo, D. Aharonov, M. Ben-Or, Limitations of Noisy Reversible Computation arXiv: Quantum Physics. ,(1996)
L. Fedichkin, A. Fedorov, Error rate of a charge qubit coupled to an acoustic phonon reservoir Physical Review A. ,vol. 69, pp. 032311- ,(2004) , 10.1103/PHYSREVA.69.032311
Dmitry Mozyrsky, Alexander Dementsov, Vladimir Privman, Quantum dynamics of spins coupled by electrons in a one-dimensional channel Physical Review B. ,vol. 72, pp. 233103- ,(2005) , 10.1103/PHYSREVB.72.233103
Daniel Gottesman, Panos Aliferis, John Preskill, Quantum accuracy threshold for concatenated distance-3 codes Quantum Information & Computation. ,vol. 6, pp. 97- 165 ,(2006) , 10.26421/QIC6.2-1