N-opcode analysis for android malware classification and categorization

作者: Suleiman Y. Yerima , Kieran Mclaughlin , Boojoong Kang , Sakir Sezer

DOI: 10.1109/CYBERSECPODS.2016.7502343

关键词: Feature extractionDomain knowledgeComputer securityOpcodeMachine learningArtificial intelligenceComputer scienceFeature selectionMalwareAndroid malwareCategorizationSupport vector machine

摘要: … investigated the effectiveness of n-gram opcodes (or n-opcodes as referred to in this paper) … as a means for Android malware detection. The advantage of the use of an opcode based …

参考文章(24)
Akanksha Sharma, Subrat Kumar Dash, Mining API Calls and Permissions for Android Malware Detection cryptology and network security. pp. 191- 205 ,(2014) , 10.1007/978-3-319-12280-9_13
Gianluca Dini, Fabio Martinelli, Andrea Saracino, Daniele Sgandurra, MADAM: A Multi-level Anomaly Detector for Android Malware Lecture Notes in Computer Science. pp. 240- 253 ,(2012) , 10.1007/978-3-642-33704-8_21
Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas, Gonzalo Álvarez, PUMA: Permission Usage to Detect Malware in Android CISIS/ICEUTE/SOCO Special Sessions. pp. 289- 298 ,(2013) , 10.1007/978-3-642-33018-6_30
Min Zhao, Fangbin Ge, Tao Zhang, Zhijian Yuan, AntiMalDroid: An Efficient SVM-Based Malware Detection Framework for Android international conference on information computing and applications. pp. 158- 166 ,(2011) , 10.1007/978-3-642-27503-6_22
Suleiman Y. Yerima, Sakir Sezer, Igor Muttik, Android malware detection: An eigenspace analysis approach science and information conference. pp. 1236- 1242 ,(2015) , 10.1109/SAI.2015.7237302
Martina Lindorfer, Matthias Neugschwandtner, Christian Platzer, None, MARVIN: Efficient and Comprehensive Mobile App Classification through Static and Dynamic Analysis computer software and applications conference. ,vol. 2, pp. 422- 433 ,(2015) , 10.1109/COMPSAC.2015.103
Gerardo Canfora, Andrea De Lorenzo, Eric Medvet, Francesco Mercaldo, Corrado Aaron Visaggio, Effectiveness of Opcode ngrams for Detection of Multi Family Android Malware availability, reliability and security. pp. 333- 340 ,(2015) , 10.1109/ARES.2015.57
Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, Yael Weiss, Andromaly: a behavioral malware detection framework for android devices intelligent information systems. ,vol. 38, pp. 161- 190 ,(2012) , 10.1007/S10844-010-0148-X
Suleiman Y. Yerima, Gavin McWilliams, Sakir Sezer, Analysis of Bayesian classification-based approaches for Android malware detection Iet Information Security. ,vol. 8, pp. 25- 36 ,(2014) , 10.1049/IET-IFS.2013.0095
Byeongho Kang, BooJoong Kang, Jungtae Kim, Eul Gyu Im, Android malware classification method: Dalvik bytecode frequency analysis research in adaptive and convergent systems. pp. 349- 350 ,(2013) , 10.1145/2513228.2513295