Why should breast tumour detection go three dimensional

作者: Zikuan Chen , Ruola Ning

DOI: 10.1088/0031-9155/48/14/312

关键词: Computer scienceComputed tomographyTUMOUR DETECTIONNuclear medicineBreast volumeMammographyBreast imagingRadiologySurgical specimenBreast structure

摘要: Although x-ray mammography is widely developed for breast tumour detection, it suffers from spatial superposition in its two-dimensional (2D) representation of a three-dimensional (3D) structure. Accordingly, 3D imaging, such as cone-beam computed tomography (CT), arises at the historic moment. In this paper, we theoretically elucidate effect associated with on detection. This explanation based line integral traversing composite model. As result, can characterize difficulty detecting small tumours terms local intensity contrast images. comparison, also introduce CT imaging volume representation, which offers advantages mass segmentation and measurement. The discussion demonstrated an experiment surgical specimen. conclusion, strongly believe that volumetric allows more accurate

参考文章(21)
M. Vahlensieck, Ph. Lang, W. P. Chan, S. Grampp, H. K. Genant, Three-dimensional reconstruction European Radiology. ,vol. 2, pp. 503- 507 ,(1992) , 10.1007/BF00187541
I. Christoyianni, A. Koutras, E. Dermatas, G. Kokkinakis, Computer aided diagnosis of breast cancer in digitized mammograms. Computerized Medical Imaging and Graphics. ,vol. 26, pp. 309- 319 ,(2002) , 10.1016/S0895-6111(02)00031-9
Vassili Kovalev, Maria Petrou, Multidimensional Co-occurrence Matrices for Object Recognition and Matching Graphical Models and Image Processing. ,vol. 58, pp. 187- 197 ,(1996) , 10.1006/GMIP.1996.0016
Ulrich Bick, Maryellen L. Giger, Robert A. Schmidt, Robert M. Nishikawa, Dulcy E. Wolverton, Kunio Doi, Automated segmentation of digitized mammograms Academic Radiology. ,vol. 2, pp. 1- 9 ,(1995) , 10.1016/S1076-6332(05)80239-9
Biao Chen, Ruola Ning, Cone-beam volume CT breast imaging: feasibility study. Medical Physics. ,vol. 29, pp. 755- 770 ,(2002) , 10.1118/1.1461843
Radhika Sivaramakrishna, Nancy A. Obuchowski, William A. Chilcote, Kimerly A. Powell, Automatic Segmentation of Mammographic Density Academic Radiology. ,vol. 8, pp. 250- 256 ,(2001) , 10.1016/S1076-6332(03)80534-2
L T Niklason, B T Christian, L E Niklason, D B Kopans, D E Castleberry, B H Opsahl-Ong, C E Landberg, P J Slanetz, A A Giardino, R Moore, D Albagli, M C DeJule, P F Fitzgerald, D F Fobare, B W Giambattista, R F Kwasnick, J Liu, S J Lubowski, G E Possin, J F Richotte, C Y Wei, R F Wirth, Digital tomosynthesis in breast imaging. Radiology. ,vol. 205, pp. 399- 406 ,(1997) , 10.1148/RADIOLOGY.205.2.9356620
Mohammad A. Karim, Displacement co-occurrence statistics for binary digital images Journal of Electronic Imaging. ,vol. 11, pp. 127- 135 ,(2002) , 10.1117/1.1455012
Heang-Ping Chan, Kunio Doi, Simranjit Galhotra, Carl J. Vyborny, Heber MacMahon, Peter M. Jokich, Image feature analysis and computer-aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography Medical Physics. ,vol. 14, pp. 538- 548 ,(1987) , 10.1118/1.596065
Ruola Ning, David L. Conover, Biao Chen, Linda Schiffhauer, Jeanne Cullinan, Yi Ning, Arvin E. Robinson, Flat-panel detector-based cone-beam volume CT breast imaging: phantom and specimen study Medical Imaging 2002: Physics of Medical Imaging. ,vol. 4682, pp. 218- 227 ,(2002) , 10.1117/12.465562