作者: Lucian Beznea , Michael Röckner , Nicu Boboc
DOI:
关键词: Zero set 、 Existential quantification 、 Mathematics 、 Dirichlet distribution 、 Topology (chemistry) 、 Discrete mathematics 、 Network topology 、 Space (mathematics)
摘要: We prove that for any semi-Dirichlet form $(\epsilon, D(\epsilon))$ on a measurable Lusin space $E$ there exists topology with the given $\sigma$-algebra as Borel so becomes quasi-regular. However one has to enlarge by zero set. More generally corresponding result arbitrary $L^p$-resolvents is proven.