Quasi-Regular Topologies for L^p-Resolvents and Semi-Dirichlet Forms

作者: Lucian Beznea , Michael Röckner , Nicu Boboc

DOI:

关键词: Zero setExistential quantificationMathematicsDirichlet distributionTopology (chemistry)Discrete mathematicsNetwork topologySpace (mathematics)

摘要: We prove that for any semi-Dirichlet form $(\epsilon, D(\epsilon))$ on a measurable Lusin space $E$ there exists topology with the given $\sigma$-algebra as Borel so becomes quasi-regular. However one has to enlarge by zero set. More generally corresponding result arbitrary $L^p$-resolvents is proven.

参考文章(12)
Lucian Beznea, Nicu Boboc, Potential Theory and Right Processes ,(2014)
Masatoshi Fukushima, Yoichi Oshima, Masayoshi Takeda, Dirichlet forms and symmetric Markov processes ,(1994)
Michael Röckner, Ludger Overbeck, Zhi Ming Ma, Markov processes associated with semi-Dirichlet forms Osaka Journal of Mathematics. ,vol. 32, pp. 97- 119 ,(1995) , 10.18910/7386
P.J. Fitzsimmons, On the Quasi-regularity of Semi-Dirichlet Forms Potential Analysis. ,vol. 15, pp. 151- 185 ,(2001) , 10.1023/A:1011249920221
Zhen-Qing Chen, Zhi-Ming Ma, Michael Röckner, Quasi-homeomorphisms of Dirichlet forms Nagoya Mathematical Journal. ,vol. 136, pp. 1- 15 ,(1994) , 10.1017/S0027763000024934
Michael Sharpe, General theory of Markov processes ,(1988)
S. E. Kuznetsov, On the Existence of a Homogeneous Transition Function Theory of Probability & Its Applications. ,vol. 31, pp. 244- 254 ,(1987) , 10.1137/1131031
S. Albeverio, Z.M. Ma, M. Rockner, Quasi-regular Dirichlet Forms and Markov Processes Journal of Functional Analysis. ,vol. 111, pp. 118- 154 ,(1993) , 10.1006/JFAN.1993.1007
J. Steffens, Excessive measures and the existence of right semigroups and processes Transactions of the American Mathematical Society. ,vol. 311, pp. 267- 290 ,(1989) , 10.1090/S0002-9947-1989-0929664-0