Background and Clutter Mixture Distributions for Active Sonar Statistics

作者: Douglas A. Abraham , James M. Gelb , Andrew W. Oldag

DOI: 10.1109/JOE.2010.2102150

关键词: Pattern recognitionMarine mammals and sonarStatisticsClutterK-distributionExpectation–maximization algorithmMathematicsMixture modelEnvelope (radar)Constant false alarm rateArtificial intelligenceMixture distribution

摘要: False alarms in active sonar systems arising from physical objects the ocean (e.g., rocks, fish, or seaweed) are often called clutter. A variety of statistical models have been proposed for representing probability false alarm (Pfa) presence clutter, including log-normal, generalized-Pareto, Weibull, and K distributions. However, owing to potential sparseness clutter echoes within analysis window, a mixture distribution comprising one distributions Rayleigh-distributed envelope (i.e., an exponentially distributed intensity) represent diffuse background scattering noise is proposed. Parameter-estimation techniques based on expectation-maximization (EM) algorithm developed mixtures containing aforementioned While standard EM handles log-normal EM-gradient algorithm, which combines with one-step Newton optimization, necessary generalized-Pareto Weibull cases. The -distributed requires development variant exploiting method-of-moments parameter estimation. Evaluation three midfrequency active-sonar data examples, spanning mildly very heavy-tailed Pfa, illustrates that provide better fit than single-component models. As might be expected, inference clutter-source shape shown less biased using model compared when contain both noise.

参考文章(47)
Anthony P. Lyons, Douglas A. Abraham, Statistical characterization of high-frequency shallow-water seafloor backscatter Journal of the Acoustical Society of America. ,vol. 106, pp. 1307- 1315 ,(1999) , 10.1121/1.428034
Samuel Kotz, N. Balakrishnan, Norman Lloyd Johnson, Continuous univariate distributions ,(1994)
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
Nicholas P Chotiros, Non-Rayleigh Distributions in Underwater Acoustic Reverberation in a Patchy Environment IEEE Journal of Oceanic Engineering. ,vol. 35, pp. 236- 241 ,(2010) , 10.1109/JOE.2009.2036383
Masoud Farshchian, Fred L. Posner, The Pareto distribution for low grazing angle and high resolution X-band sea clutter ieee radar conference. pp. 789- 793 ,(2010) , 10.1109/RADAR.2010.5494513
T. Lamont-Smith, Translation to the normal distribution for radar clutter IEE Proceedings - Radar, Sonar and Navigation. ,vol. 147, pp. 17- 22 ,(2000) , 10.1049/IP-RSN:20000043
D. Blacknell, Comparison of parameter estimators for K-distribution IEE Proceedings - Radar, Sonar and Navigation. ,vol. 141, pp. 45- 52 ,(1994) , 10.1049/IP-RSN:19949885
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Edwin KP Chong, Stanislaw H Żak, An introduction to optimization ,(1996)
N. P. Chotiros, H. Boehme, T. G. Goldsberry, S. P. Pitt, R. A. Lamb, A. L. Garcia, R. A. Altenburg, Acoustic backscattering at low grazing angles from the ocean bottom. Part II. Statistical characteristics of bottom backscatter at a shallow water site Journal of the Acoustical Society of America. ,vol. 77, pp. 975- 982 ,(1984) , 10.1121/1.392065