Scene Segmentation Driven by Deep Learning and Surface Fitting

作者: Ludovico Minto , Giampaolo Pagnutti , Pietro Zanuttigh

DOI: 10.1007/978-3-319-49409-8_12

关键词: Spectral clusteringPattern recognitionSurface (mathematics)Metric (mathematics)Convolutional neural networkScale-space segmentationComputer visionSegmentationArtificial intelligenceSimilarity (geometry)Deep learningComputer science

摘要: This paper proposes a joint color and depth segmentation scheme exploiting together geometrical clues learning stage. The approach starts from an initial over-segmentation based on spectral clustering. input data is also fed to Convolutional Neural Network (CNN) thus producing per-pixel descriptor vector for each scene sample. An iterative merging procedure then used recombine the segments into regions corresponding various objects surfaces. proposed algorithm by considering all adjacent computing similarity metric according CNN features. couples of with higher are considered merging. Finally uses NURBS surface fitting in order understand if selected correspond single surface. comparison state-of-the-art methods shows how method provides accurate reliable segmentation.

参考文章(32)
Nathan Silberman, Derek Hoiem, Pushmeet Kohli, Rob Fergus, Indoor Segmentation and Support Inference from RGBD Images Computer Vision – ECCV 2012. pp. 746- 760 ,(2012) , 10.1007/978-3-642-33715-4_54
Clément Farabet, Camille Couprie, Yann LeCun, Laurent Najman, Convolutional nets and watershed cuts for real-time semantic Labeling of RGBD videos Journal of Machine Learning Research. ,vol. 15, pp. 3489- 3511 ,(2014)
Nico Höft, Hannes Schulz, Sven Behnke, Fast Semantic Segmentation of RGB-D Scenes with GPU-Accelerated Deep Neural Networks Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz). pp. 80- 85 ,(2014) , 10.1007/978-3-319-11206-0_9
Anran Wang, Jiwen Lu, Gang Wang, Jianfei Cai, Tat-Jen Cham, None, Multi-modal Unsupervised Feature Learning for RGB-D Scene Labeling Computer Vision – ECCV 2014. pp. 453- 467 ,(2014) , 10.1007/978-3-319-10602-1_30
Clément Farabet, Clément Farabet, Camille Couprie, Yann LeCun, Laurent Najman, Indoor Semantic Segmentation using depth information arXiv: Computer Vision and Pattern Recognition. ,(2013)
Saurabh Gupta, Ross Girshick, Pablo Arbeláez, Jitendra Malik, Learning Rich Features from RGB-D Images for Object Detection and Segmentation european conference on computer vision. pp. 345- 360 ,(2014) , 10.1007/978-3-319-10584-0_23
Amit Bleiweiss, Michael Werman, Fusing Time-of-Flight Depth and Color for Real-Time Segmentation and Tracking Lecture Notes in Computer Science. ,vol. 5742, pp. 58- 69 ,(2009) , 10.1007/978-3-642-03778-8_5
Marcus Wallenberg, Michael Felsberg, Per-Erik Forssén, Babette Dellen, Channel Coding for Joint Colour and Depth Segmentation Lecture Notes in Computer Science. pp. 306- 315 ,(2011) , 10.1007/978-3-642-23123-0_31
Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation computer vision and pattern recognition. pp. 3431- 3440 ,(2015) , 10.1109/CVPR.2015.7298965
Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik, Hypercolumns for object segmentation and fine-grained localization computer vision and pattern recognition. pp. 447- 456 ,(2015) , 10.1109/CVPR.2015.7298642