Mixture decomposition of distributions by copulas in the symbolic data analysis framework

作者: E. Diday , M. Vrac

DOI: 10.1016/J.DAM.2004.06.018

关键词: Standard algorithmsMathematicsCopula (linguistics)Symbolic data analysisCombinatoricsMixture distributionBinary treeApplied mathematicsCategorical variableProbability distributionPartition (number theory)

摘要: This work investigates the situation in which each unit from a given set is described by some vector of p probability distributions. Our aim to find simultaneously ''good'' partition these units and probabilistic description clusters with model using ''copula functions'' associated class this partition. Different copula models are presented. The mixture decomposition problem resolved general case. result extends standard case where distributions instead traditional classical single (categorical or numerical) values. Several generalizations algorithms proposed. All results first considered variable then extended variables top-down binary tree approach.

参考文章(17)
Roger B. Nelsen, An Introduction to Copulas (Springer Series in Statistics) Springer-Verlag New York, Inc.. ,(2006)
Analysis of Symbolic Data Springer Berlin Heidelberg. ,(2000) , 10.1007/978-3-642-57155-8
A. Schroeder, Y. Ok, Edwin Diday, The Dynamic Clusters Method in Pattern Recognition. ifip congress. pp. 691- 697 ,(1974)
B. Schweizer, A. Sklar, Probabilistic metric spaces ,(1983)
Edwin Diday, Mathieu Vrac, Alain Chédin, Décomposition de mélange de distributions et application à des données climatiques Revue de Statistique Appliquée. ,vol. 52, pp. 67- 96 ,(2004)
CHRISTIAN GENEST, Frank's family of bivariate distributions Biometrika. ,vol. 74, pp. 549- 555 ,(1987) , 10.1093/BIOMET/74.3.549
Richard C. Dubes, Anil K. Jain, Algorithms for clustering data ,(1988)